On/Off Project – Switch a light on/off using your smart phone

f you found this article after doing a search on Google, welcome! On this website you will find plenty of content around DIY home automation using open-source hardware. Enjoy the article!

I have been asked a lot about writing tutorials using the Raspberry Pi for home automation, as well as how to access your home automation systems from anywhere. And this is exactly what I will show you in this tutorial: you are going to learn how you can control a relay that is attached to your Raspberry Pi, from any device like your computer or smartphone, and from anywhere in the world.

Control a Relay From Anywhere Using the Raspberry Pi

In this project, we will connect the relay to a simple LED, but of course this LED could be replaced by anything like a lamp, some lights on the ceiling, or the motor of your electric curtains. And to control this relay from anywhere, we are going to run a small app based on Node.js to control the relay from any web browser. Sounds exciting ? Let’s dive in !

Hardware & Software Requirements

For this tutorial, of course you will need a Raspberry Pi board. The version of the board or the model (A or B) doesn’t really matter, but keep in mind that you will have to connect it to your local network, so you will need a WiFi dongle if you are using the A model which doesn’t have an Ethernet port. In this tutorial, I used a Raspberry Pi model B with the WiPi dongle.

For the components, you will need a small 5V relay, a P2N2222A transistor (but any similar NPN transistor will do the job), a 1N4001 diode, a 1K ohm resistor, a 220 ohm resistorone LED, and of course a breadboard and some jumper wires. To connect the Raspberry Pi to the breadboard, I also used the Adafruit cobbler kit, but any cobbler kit for the Raspberry Pi will work fine.

This is the list of the components that have been used in this tutorial:

On the software side, you will need a fully usable Raspberry Pi. And by usable I mean already configured with the Raspbian Linux distribution installed on it. There are many tutorials on the web that will guide you through the installation of Raspbian on your Pi, but I recommend this one:

http://www.raspberrypi.org/documentation/installation/installing-images/

You also have to check that your Raspberry Pi is connected to the Internet. Again, this will depend on your configuration (Ethernet or WiFi) and your router, but is usually really easy. If you are using the Ethernet connection, simply connect a cable to your router and it should work automatically. If you’re using a WiFi dongle, the easiest solution is to use the GUI that comes with Raspbian to find your wireless network and enter your WEP/WPA password.

The server part is based on Node.js, so you will need to install it on your Pi with:

wget http://node-arm.herokuapp.com/node_latest_armhf.deb
sudo dpkg -i node_latest_armhf.deb

Now, you need to download the GitHub repository of the project somewhere on your Pi:

git clone https://github.com/openhomeautomation/pi-node-relay

Finally, you need to go into the folder you just downloaded, and install the node.js module to interface directly with the GPIO pins of the Pi:

sudo npm install rpi-gpio express

If it doesn’t work, just restart the Pi and try again the same operation. You are now ready to build the hardware!

Hardware Configuration

There is quite a lot of hardware to connect for this project, so pay attention to this paragraph. First, let’s speak about the relay itself. A relay is an electromagnetic switch. The one I used in this project basically has 2 parts. The first part, the coil, is the low-power part of the circuit, and will be controlled by the Raspberry Pi. The second part of the relay is the switch, which can sustain higher powers. This part is actually mechanical on the relay I used, so you should hear a “click” when the relay is switching to another state. Activating the low-power part by applying 5V on the coil will activate the switch and change the state of the relay. To monitor in which state the relay is, I used one LED on one part of the switch. Of course, the LED can be replaced by any device you want to switch on or off, for example a lamp.

Control a Relay From Anywhere Using the Raspberry Pi schematic

But … there is still a problem. The relay is rated at 5V to switch, and the Raspberry Pi GPIO port can only deliver 3.3V. This is why we need a transistor in between to activate the relay. The transistor is basically a solid-state switch, which will be activated via the digital output of the Raspberry Pi board. When the transistor is on, the 5V pin of the Raspberry Pi board will directly power the relay, thus making the relay switch.

We still need to place one component I haven’t spoken about yet: the diode. The role of this diode will be to protect the low-power circuit when the relay is switching. In case any current is flowing through the input of the relay because of the switching of the high-power part, it will just flow through this diode instead of destroying the transistor or the output of the Raspberry Pi. Just place this diode in parallel of the input part of the relay, with the cathode connected to the positive 5V power supply.

 

For more detail: On/Off Project – Switch a light on/off using your smart phone


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top