Google’s quantum computer just accurately simulated a molecule for the first time

Google's engineers just achieved a milestone in quantum computing: they’ve produced the first completely scalable quantum simulation of a hydrogen molecule.

That’s big news, because it shows similar devices could help us unlock the quantum secrets hidden in the chemistry that surrounds us.

 

Google’s quantum computer just accurately simulated a molecule for the first time

 

Researchers working with the Google team were able to accurately simulate the energy of hydrogen H2 molecules, and if we can repeat the trick for other molecules, we could see the benefits in everything from solar cells to medicines.

These types of predictions are often impossible for ‘classical' computers or take an extremely long time – working out the energy of something like a propane (C3H8) molecule would take a supercomputer in the region of 10 days.

To achieve the feat, Google's engineers teamed up with researchers from Harvard University, Lawrence Berkeley National Labs, UC Santa Barbara, Tufts University, and University College London in the UK.

“While the energies of molecular hydrogen can be computed classically (albeit inefficiently), as one scales up quantum hardware it becomes possible to simulate even larger chemical systems, including classically intractable ones,” writes Google Quantum Software Engineer Ryan Babbush.

Chemical reactions are quantum in nature, because they form highly entangled quantum superposition states. In other words, each particle's state can't be described independently of the others, and that causes problems for computers used to dealing in binary values of 1s and 0s.

Enter Google's universal quantum computer, which deals in qubits – bits that themselves can be in a state of superposition, representing both 1 and 0 at the same time.

To run the simulation, the engineers used a supercooled quantum computing circuit called a variational quantum eigensolver (VQE) – essentially a highly advanced modelling system that attempts to mimic our brain's own neural networks on a quantum level.

For more detail: Google’s quantum computer just accurately simulated a molecule for the first time


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top