Inverter crystal oscillator




Greetings — a short, first post for 2016 !

In numerous RF synthesizer chips lies an inverter with input and output pins for making a reference crystal oscillator clock. I built some discrete chip inverter xtal oscillators with 74HC series logic gates to better examine them.  You’ll quickly recognize the oft-used Pierce oscillator topology with 1 trimmer capacitor to tweak the fundamental frequency which might vary from factors like crystal aging and gate, crystal, crystal holder + board reactances.

Inverter crystal oscillator

I determined the 27 pF and trimmer cap values through experiments and measures.

Above — A crystal reference oscillator + buffer with inverters built from NAND gates. The crystal is a good 1 — built in 2013; AT- cut; parallel 20 pF load capacitance; fundamental 12.8 MHz; a measured QuL of 265K and zero spurs during my test sweeps. Further, this crystal ages < 5 ppm per annum for at least 2 decades.

If I contrast this with some cheap xtals I bought and tested from eBay  — it’s night versus day. You might find such xtals in DDS and other low-cost synthesizers kits. They typically come in a HC-49S case, might suffer a QuL of 40-60K — and more alarmingly, those I measured often showed strong, close-in spurs to further trash the already compromised close-in phase noise of these low-cost synthesizers.

Quoting Dr. Ulrich Rohde ” [ALL] elements in a synthesizer contribute to noise. Two primary noise contributors are the reference and the VCO. Actually, the crystal oscillator or frequency standard is a high-Q version of the VCO”  [ Reference 1 ].

For more detail : Inverter crystal oscillator




Leave a Comment

© 2015 Powered By Engineering Projects Team, Raspberry Pi Projects

Scroll to top