Raspberry Pi Firewall and Intrusion Detection System

Maybe you think β€œWhy should I protect my pivate network? I've got no critical information on my computer, no sensitive data”. Are your emails really public? Don't you have some photos you don't want to upload to Facebook, because they're private. Do you really don't care if you computer is hijacked and used to attack other PCs or act as a spam server?
I don't think you're so careless but maybe you thInk, that setting up a secure network environment is expensive and really difficult. Don't be afraid in this article we will see how to create a network gateway with a firewall, DHCP and DNS server, and a Network Intrusion Detection System (NIDS), entirely based on a Raspberry Pi.
After this instructable we will have a small security system with the following features:
– Enforce network traffic policies
– Ensure that abnormal packets does not get out or in our network
– DHCP server to distribute network parameters to your LAN
– DNS cache/server to speed up DNS requests and filter out bad DNS queries
– NIDS to detect malicious traffic, such as malware or vulnerability exploits
– Central network monitoring node to watch and debug network traffic
Some may now say β€œHey wait, the Raspberry hs only one network port, how should this act as a gateway?”. This is done by a small trick. Of course you could buy an USB to ethernet device to get a second network card. But to keep it as simple as possible we just use the Raspi as our gateway, this works really nice. Traffic flows in both ways trought it. Of course it requires some additional configuration, but it's not a problem.Raspberry Pi Firewall and Intrusion Detection System

Step 1: Parts

To make our security system we need:
– A Raspberry Pi
– An SD card, I took a class 6 SD Card with 8 GB, 4 should be enough. Be careful with class 10 types, many of them cause

Parts
problems with the Raspberry!
– An Ethernet cable
– A micro-usb power cable
– An Archlinux ARM image. As we don't need any graphical interface, and as the NIDS part will require much of the ressources, we
need a lightweight one with a barebone terminal. So ArchLinux ARM is the best choice for this project.
– Win32DiskManager software
– An USB keyboard (during the time of installation)
During the setup we need a display. Maybe you connect your Raspberry to a TV screen or to a monitor, which is what I prefer. After the basic setup you won't need it any longer becaue we'll remotely access our Raspi via the network

Step 2: Installing ArchLinux

To install your image on your SD card, please follow the following Windows instructions quoted from the ArchLinux ARM website :

Installing ArchLinux
1. Download and install Win32DiskImager
2. Select the archlinuxarm-13-06-2012.img image file, select your SD card drive letter, and click Write
3. Eject the card from your computer, insert into the Raspberry Pi, and power it on.
4. If your keyboard, mouse, or other USB device doesn't appear to be working properly, try using it through a POWERED USB hub.
The Raspberry Pi's USB ports are limited to 100mA.
Now we should have a running ArchLinux on your Raspberry Pi.

Step 3: Secure Password

After the boot sequence you are prompted to enter a login. The default login and password for ArchLinux ARM are root/root.

Secure Password
If you set up a network security device you shouldn't fail with a weak password which can be cracked in a few seconds
There's a nice comic which helps you to chose a strong passwords below. If you made your choice you can change the default password with the following command
# passwd
Enter the password twice. if they are identical the password will be changed. Please make a note of the new password and store it at a safe place.

Step 4: Network configuration

Having a stroong password, we can now go on and configure the network settings on our Raspberry Security System (RSS). We have to set a static IP address as well as the netmask and the gateway. The network topology is as follow : the LAN subnet is 192.168.1.0/24, the DSL modem/router is 192.168.1.1 (LAN gateway), and the RSS will be 192.168.1.3. Of course you can modify these settings accordingly to your network.

Network Configuration
# vi /etc/rc.conf
# ———————————————————————–
# NETWORKING
# ———————————————————————–
# HOSTNAME: Hostname of machine. Should also be put in /etc/hosts
#
HOSTNAME=”RSS”
# Static IP
interface=eth0
address=192.168.1.3
netmask=255.255.255.0
broadcast=192.168.1.255
gateway=192.168.1.1
# Disable DHCP by commenting these lines or else it will override the static IP configuration
# interface=eth0
# address=
# netmask=
# gateway=
Remove from startup the unneeded daemons :
DAEMONS=(!hwclock syslog-ng network @crond @sshd @openntpd)
# vi /etc/hosts
192.168.1.3 PiWall
127.0.0.1 localhost.localdomain localhost
::1 localhost.localdomain localhost
# rc.d restart network

Step 5: System updates

In this step we'll update the system and install required packages for the RSS
Initiate a full upgrade :

System updates
# pacman –Syu
Maybe the system asks to update pacman itself, if so answer with β€œyes”.
Now we need to create keys for pacman :
# pacman-key –init
If you just wait for the process to finish, you will wait hours! The keys are generated with random factors and need external commands to speed up the process. If you have a mouse connected, you could move it around, or you just open another terminal (ALT + F2 or F3) and run different commands like ls -l, less, top, cat and so on.
After te keys are generated we now request a full upgrade again:
# pacman -Syu
This could take a while, makse some tea or coffee, pet your cat/dog, call a friend or read another chapter of a book. You won't miss anything awesome if you don't sit all the time in front of your TV or monitor.
Once it's done, we can now install the additional packages:
# pacman –S vim
# pacman –S htop
# pacman –S tcpdump
Vim is simply a lot better than vi, htop is an improved top, and tcpdump is very handy to debug network traffic and ensure that everything is routed correctly.
Now reboot the system to apply updates that requires it :
# reboot
Once the system has restarted, check the memory available :
# htop
If the total memory is down to 128Mo, that means that the β€œstart.elf” is splitting 128MB for the OS and 128MB for the GPU. We do not need so much memory for the GPU, and we certainly need more for the system.
Fix it by doing the following to give 224MB to the OS :
# cd /boot
# mv ./start.elf ./start.elf.old
# cp ./arm224_start.elf ./start.elf
# reboot

Step 6: Resizing the SD Card

ArchLinux is now up to date and running, but the full SD card is not used. We need to extend the current partition to use the full space available.

Resizing the SD Card
# fdisk /dev/mmcblk0p2
Delete the partition :
d
2
Create a new one (new, primary, 2):
n
p
2
Enter
Enter
Write changes to disk :
w
Reboot to apply the changes :
# reboot
While the startup process, it will run a command to extend the partition, this will take a while depending on the size of your SD card

Step 7: Adding another user

It's no good idea to do everything as root. if this account gets compromized, we've got some serious problems. To avoid this we will now create a user who will not be root, but who will be allowed to run commands as root when needed.

Adding Another User
We'll create now the user β€œrss”, but feel free to create something better for you πŸ˜‰
# useradd -m -g users -G optical,storage,video,wheel,power -s /bin/bash rss
Create a password for our new account :
# passwd rss
Again you should really chose a strong password….
We then need to install the β€œsudo” package, which will enable our user to run commands as root when needed :
# pacman -S sudo
The last thing to allow us to use the sudo command :
# visudo
## Uncomment to allow members of group wheel to execute any command
%wheel ALL=(ALL) ALL
Logout from root, and login with our new user :
# logout
From now on, your prompt will begin with β€œ$” and not anymore with β€œ#”, and will require the sudo command for every privileged task.

Step 8: Configuring SSH

SSH will allow us to connect remotely from our personal computer, or anything else, by using an SSH client. If you are on Windows, you will be able to use Putty for instance, from Linux you can use ssh from console.

Configuring SSH
$ sudo vi /etc/ssh/sshd_config
# Modify the default port
Port 15507
Protocol 2
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key
UsePrivilegeSeparation yes
KeyRegenerationInterval 3600
ServerKeyBits 768
SyslogFacility AUTH
LogLevel INFO
LoginGraceTime 60
# Disable login with the root account
PermitRootLogin no
StrictModes yes
RSAAuthentication yes
PubkeyAuthentication yes
IgnoreRhosts yes
RhostsRSAAuthentication no
HostbasedAuthentication no
PermitEmptyPasswords no
ChallengeResponseAuthentication no
PrintMotd no
PrintLastLog yes
TCPKeepAlive yes
AcceptEnv LANG LC_*
Subsystem sftp /usr/lib/openssh/sftp-server
UsePAM yes
$ sudo rc.d restart sshd
Now get to your PC or laptop and try to connect with your user β€œrss”. If everything is fine, you can now disconnect your Raspberry from your monitor or TV set and unplug the keyboard.
Another possible step to improve the security would be to add a certificate to authenticate, also requiring a password. It would render useless any bruteforce attack against SSH. However, as it is just in a home environement without remote access to SSH from the Internet, we can skip this feature.

Step 9: Security Settings

Now we customize the default network sysctl parameters to our needs.

Security Settings

$ sudo vi /etc/sysctl.conf
# Enable Spoof protection (reverse-path filter)
net.ipv4.conf.default.rp_filter=1
net.ipv4.conf.all.rp_filter=1

# Enable TCP/IP SYN cookies
net.ipv4.tcp_syncookies=1

# Ignore ICMP broadcasts
net.ipv4.icmp_echo_ignore_broadcasts = 1

# Ignore bogus ICMP errors
net.ipv4.icmp_ignore_bogus_error_responses = 1

# Do not accept ICMP redirects (prevent MITM attacks)
net.ipv4.conf.all.accept_redirects = 0
net.ipv4.conf.eth0.accept_redirects = 0

# Do not send ICMP redirects (really important for our single NIC gateway)
net.ipv4.conf.all.send_redirects = 0
net.ipv4.conf.default.send_redirects = 0
net.ipv4.conf.eth0.send_redirects = 0

# Do not accept IP source route packets
net.ipv4.conf.all.accept_source_route = 0

# Log Martian Packets
net.ipv4.conf.all.log_martians = 1

# router function (important1!!)
net.ipv4.ip_forward = 1

# Avoid Out Of Memory
vm.min_free_kbytes=8192

After saving the settings don't forget to apply the changes :
$ sudo sysctl –p

Step 10: DHCP and DNS

Now it's time to set up our DHCP and DNS server.

DHCP and DNS

Having DHCP on our RSS will enable our gateway to send information to new hosts so that :
– they send all of their traffic through us, as a gateway
– they send all of their DNS queries to us, as a DNS server

Any new host will be protected by our gateway automatically. That means that the RSS can also be installed on environements where people are not knowledgeable enough to get their hands on it.

The DNS cache/server on it's side, will allow us to have faster DNS replies, as they will be cached. Some common DNS queries are done multiple times, whereas the answer can be cached once, and replied without querying the ISP's DNS servers. The more the computers, the more the gain is visible. The DNS part will also deny incomplete or bad DNS requests, adding to the security brought by the RSS.

One package contains both DHCP and DNS in a single daemon, and is moreover light on ressources and easy to configure : dnsmasq.

$ sudo pacman –S dnsmasq
$ sudo vi /etc/dnsmasq.conf
## DNS CONFIGURATION ##
# Interfaces for DNS
interface=eth0
listen-address=192.168.1.3
bind-interfaces

# Never forward plain names (without a dot or domain part)
domain-needed

# Never forward addresses in the non-routed address spaces.
bogus-priv

# Max concurrent DNS queries (default = 150)
dns-forward-max=150

# DNS cache size (default = 150)
cache-size=300

## DHCP CONFIGURATION ##
# DHCP range and lease time
dhcp-range=192.168.1.10,192.168.1.20,255.255.255.0,4d

# Set DHCP as authoritative
dhcp-authoritative

Now let's restart dnsmasq to apply our configuration :
$ sudo rc.d restart dnsmasq

Now you must disable DHCP on your ISP DSL modem/router. You can't have two DHCP servers in the same subnet.

At this time, it is strongly advised to test both DHCP and DNS. If you wish to do so, follow what is below.

On Windows if you have DHCP configured just type at command line :
> ipconfig/release
> ipconfig/renew
> ipconfig/all

Check that you get not only your IP back, but also your correct gateway and DNS.

To test for the DNS, the check is to be done on the PiWall itself. Run tcpdump with the following arguments :
$ sudo tcpdump -i eth0 dst port 53 or src port 53 -n -x -X -v

Then on your Windows client, for instance, flush your DNS cache then do a ping to www.google.com :
> ipconfig/flushdns
> ping www.google.com

Check with the tcpdump that the request is made by the Windows client to the RSS, and that this one forwards it to the outside DNS server, to finally give the answer to the Windows client. Repeat the dns flush and the ping on the Windows client, and this time the RSS should answer directly without sending a DNS query outside.

Step 11: Firewall Settings

Below, you will find a very restrictive firewall script. You may need to modify it to fit your needs as it will block websites not on standards ports (80/443), and softwares not using HTTP/HTTPS/FTP ports (P2P, Skype, Google Talk, etc…).

Firewall Settings

If you do not wish that level of security, there's also a more straightforward firewall script that is basically β€œset and forget”.

You can chose between firewall.advanced or firewall.simple, and then customise it. Credits go to Guillaume Kaddouch

A – Advanced ruleset
This script basically does the following :
– Blocks inbound/outbound invalid TCP flags (even from established flows)
– Optimises DNS queries (IP TOS field)
– Identifies traffic by flow type, and then match it against a ruleset
– Adds randomness to the NAT process
– Only allow few outbound standard ports (http, https, ftp)
– Logs accurately what is dropped and avoid log flood
– Drops inbound packets with low TTL (could mean a ttl expiry attack or a traceroute)
– Detect & block outbound malware connections

$ sudo touch /etc/firewall.advanced
$ sudo touch /etc/firewall.flows
$ sudo chmod u+x /etc/firewall.*

The flows identification is a list of rules directing the traffic into the matching custom chain (e.g FORWARD_OUT, FORWARD_IN, LAN_IN, etc…). This list of rules, once debugged and validated, should not be modified afterwards. Also, as they use some space in the script and could be boring to read, it makes the filtering rules harder to read if they are on the same script. That's why I move them in a separate file, that I just call from the main script :
$ sudo vi /etc/firewall.flows
#!/bin/bash

# ” Date August 2012
# ” Author : Guillaume Kaddouch
# ” Version : Flows 1.0

#######################
# FLOW IDENTIFICATION #
##############################################################################################
# NAT_OUT
iptables -t nat -A POSTROUTING -o $LAN -p tcp –ipv4 -m iprange \
–src-range $DHCP_RANGE ! –dst-range $DHCP_RANGE -m pkttype –pkt-type unicast -m addrtype ! –dst-type LOCAL\
-m state –state NEW,ESTABLISHED,RELATED -j NAT_OUT

iptables -t nat -A POSTROUTING -o $LAN -p udp –ipv4 -m iprange \
–src-range $DHCP_RANGE ! –dst-range $DHCP_RANGE -m pkttype –pkt-type unicast -m addrtype ! –dst-type LOCAL\
-m state –state NEW,ESTABLISHED,RELATED -j NAT_OUT

iptables -t nat -A POSTROUTING -o $LAN -p icmp –ipv4 -m iprange \
–src-range $DHCP_RANGE ! –dst-range $DHCP_RANGE -m pkttype –pkt-type unicast -m addrtype ! –dst-type LOCAL\
-m state –state NEW,ESTABLISHED,RELATED -j NAT_OUT

# FORWARD_OUT
iptables -A FORWARD -i $LAN -p tcp –ipv4 -m iprange \
–src-range $DHCP_RANGE ! –dst-range $DHCP_RANGE -m pkttype –pkt-type unicast -m addrtype ! –src-type LOCAL\
-m state –state NEW,ESTABLISHED,RELATED -j FORWARD_OUT

iptables -A FORWARD -i $LAN -p udp –ipv4 -m iprange \
–src-range $DHCP_RANGE ! –dst-range $DHCP_RANGE -m pkttype –pkt-type unicast -m addrtype ! –src-type LOCAL\
-m state –state NEW,ESTABLISHED,RELATED -j FORWARD_OUT

iptables -A FORWARD -i $LAN -p icmp –ipv4 -m iprange \
–src-range $DHCP_RANGE ! –dst-range $DHCP_RANGE -m pkttype –pkt-type unicast -m addrtype ! –src-type LOCAL\
-m state –state NEW,ESTABLISHED,RELATED -j FORWARD_OUT

# FORWARD_IN
iptables -A FORWARD -i $LAN -p tcp –ipv4 -m iprange \
! –src-range $DHCP_RANGE –dst-range $DHCP_RANGE -m pkttype –pkt-type unicast -m addrtype ! –src-type LOCAL\
-m state –state ESTABLISHED,RELATED -j FORWARD_IN

iptables -A FORWARD -i $LAN -p udp –ipv4 -m iprange \
! –src-range $DHCP_RANGE –dst-range $DHCP_RANGE -m pkttype –pkt-type unicast -m addrtype ! –src-type LOCAL\
-m state –state ESTABLISHED,RELATED -j FORWARD_IN

iptables -A FORWARD -i $LAN -p icmp –ipv4 -m iprange \
! –src-range $DHCP_RANGE –dst-range $DHCP_RANGE -m pkttype –pkt-type unicast -m addrtype ! –src-type LOCAL\
-m state –state ESTABLISHED,RELATED -j FORWARD_IN

# LAN_IN
iptables -A INPUT -i $LAN -p tcp –ipv4 -m iprange \
–src-range $DHCP_RANGE -d $RSS -m pkttype –pkt-type unicast -m addrtype –dst-type LOCAL\
-m state –state NEW,ESTABLISHED,RELATED -j LAN_IN

iptables -A INPUT -i $LAN -p udp –ipv4 -m iprange \
–src-range $DHCP_RANGE -d $RSS -m pkttype –pkt-type unicast -m addrtype –dst-type LOCAL\
-m state –state NEW,ESTABLISHED,RELATED -j LAN_IN

iptables -A INPUT -i $LAN -p icmp –ipv4 -m iprange \
–src-range $DHCP_RANGE -d $RSS -m pkttype –pkt-type unicast -m addrtype –dst-type LOCAL\
-m state –state NEW,ESTABLISHED,RELATED -j LAN_IN

# LAN_BROADCAST
iptables -A INPUT -i $LAN -p tcp –ipv4 \
! -d $RSS -m pkttype –pkt-type broadcast -m addrtype –dst-type BROADCAST\

-m state ! –state INVALID -j LAN_BROADCAST

iptables -A INPUT -i $LAN -p udp –ipv4 \
! -d $RSS -m pkttype –pkt-type broadcast -m addrtype –dst-type BROADCAST\
-m state ! –state INVALID -j LAN_BROADCAST

iptables -A INPUT -i $LAN -p icmp –ipv4 \
! -d $RSS -m pkttype –pkt-type broadcast -m addrtype –dst-type BROADCAST\
-m state ! –state INVALID -j LAN_BROADCAST

# INTERNET_GATEWAY
iptables -A INPUT -i $LAN -p tcp –ipv4 \
! -s $LAN_SUBNET -d $RSS -m pkttype –pkt-type unicast -m addrtype –dst-type LOCAL\
-m state –state ESTABLISHED,RELATED -j INTERNET_GATEWAY

iptables -A INPUT -i $LAN -p udp –ipv4 ! \
-s $LAN_SUBNET -d $RSS -m pkttype –pkt-type unicast -m addrtype –dst-type LOCAL\
-m state –state ESTABLISHED,RELATED -j INTERNET_GATEWAY

iptables -A INPUT -i $LAN -p icmp –ipv4 \
! -s $LAN_SUBNET -d $RSS -m pkttype –pkt-type unicast -m addrtype –dst-type LOCAL\
-m state –state ESTABLISHED,RELATED -j INTERNET_GATEWAY

# GATEWAY_LAN
iptables -A OUTPUT -o $LAN -p tcp –ipv4 \
-s $RSS -d $LAN_SUBNET -m pkttype –pkt-type unicast -m addrtype –dst-type UNICAST\
-m state –state NEW,ESTABLISHED,RELATED -j GATEWAY_LAN

iptables -A OUTPUT -o $LAN -p udp –ipv4 \
-s $RSS -d $LAN_SUBNET -m pkttype –pkt-type unicast -m addrtype –dst-type UNICAST\
-m state –state NEW,ESTABLISHED,RELATED -j GATEWAY_LAN

iptables -A OUTPUT -o $LAN -p icmp –ipv4 \
-s $RSS -d $LAN_SUBNET -m pkttype –pkt-type unicast -m addrtype –dst-type UNICAST\
-m state –state NEW,ESTABLISHED,RELATED -j GATEWAY_LAN

# GATEWAY_BROADCAST
iptables -A OUTPUT -o $LAN -p tcp –ipv4 \
-s $RSS -m pkttype –pkt-type broadcast -m addrtype –dst-type BROADCAST\
-m state –state NEW,ESTABLISHED,RELATED -j GATEWAY_BROADCAST

iptables -A OUTPUT -o $LAN -p udp –ipv4 \
-s $RSS -m pkttype –pkt-type broadcast -m addrtype –dst-type BROADCAST\
-m state –state NEW,ESTABLISHED,RELATED -j GATEWAY_BROADCAST

iptables -A OUTPUT -o $LAN -p icmp –ipv4 \
-s $RSS -m pkttype –pkt-type broadcast -m addrtype –dst-type BROADCAST\
-m state –state NEW,ESTABLISHED,RELATED -j GATEWAY_BROADCAST

# GATEWAY_INTERNET
iptables -A OUTPUT -o $LAN -p tcp –ipv4 \
-s $RSS ! -d $LAN_SUBNET -m pkttype –pkt-type unicast -m addrtype –dst-type UNICAST\
-m state –state NEW,ESTABLISHED,RELATED -j GATEWAY_INTERNET

iptables -A OUTPUT -o $LAN -p udp –ipv4 \
-s $RSS ! -d $LAN_SUBNET -m pkttype –pkt-type unicast -m addrtype –dst-type UNICAST\
-m state –state NEW,ESTABLISHED,RELATED -j GATEWAY_INTERNET

iptables -A OUTPUT -o $LAN -p icmp –ipv4 \
-s $RSS ! -d $LAN_SUBNET -m pkttype –pkt-type unicast -m addrtype –dst-type UNICAST\
-m state –state NEW,ESTABLISHED,RELATED -j GATEWAY_INTERNET

##############################################################################################

Now we will create the filtering rules script talked earlier :
$ sudo vi /etc/firewall.advanced
#!/bin/bash

# ” Date August 2012
# ” Author : Guillaume Kaddouch
# ” URL : http://networkfilter.blogspot.com
# ” Version : Advanced 1.0

echo β€œSetting up variables”
# VARIABLES TO CUSTOMISE TO MATCH YOUR NETWORK
LAN=”eth0β€³
LAN_SUBNET=”192.168.1.0/24β€³
DHCP_RANGE=”192.168.1.10-192.168.1.20β€³
DNS_SERVER1=”8.8.8.8β€³
DNS_SERVER2=”208.67.222.222β€³
RSS=”192.168.1.3β€³
MODEM_ROUTER=”192.168.1.1β€³
UNPRIV_PORTS=”1024:65535β€³
SSH=”15507β€³
NTP_SERVER=”65.55.21.22β€³

echo β€œFlushing existing chains and rules…”
# FLUSHING CHAINS & RULES
iptables -t filter -F
iptables -t filter -X
iptables -t nat -F
iptables -t nat -X
iptables -t mangle -F
iptables -t mangle -X

echo β€œSetting up default policies”
# DEFAULT POLICIES
iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP

# LOOPBACK
iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT

echo β€œCreating chains”
# CHAINS
iptables -N FORWARD_OUT
iptables -N FORWARD_IN
iptables -N LAN_IN
iptables -N LAN_BROADCAST
iptables -N GATEWAY_LAN
iptables -N GATEWAY_BROADCAST
iptables -N GATEWAY_INTERNET
iptables -N INTERNET_GATEWAY
iptables -t nat -N NAT_OUT

# CHAIN TO CHECK, LOG, AND OPTIMISE
iptables -N CHECK_TCP_FLAGS
iptables -N LOGDROP_TCP_FLAGS
iptables -N LOGDROP_MALWARE
iptables -N LOGDROP_BADPORT
iptables -t mangle -N FAST_DNS

echo β€œLoading rules”

#################################
# PROTOCOL CHECK & OPTIMIZATION #
##############################################################################################
iptables -A FORWARD -i $LAN -p tcp –ipv4 -j CHECK_TCP_FLAGS
iptables -A INPUT -i $LAN -p tcp –ipv4 -j CHECK_TCP_FLAGS

iptables -t mangle -A OUTPUT -o $LAN -p tcp –ipv4 -s $RSS -m pkttype –pkt-type unicast –dport domain -m \
state –state NEW,ESTABLISHED,RELATED -j FAST_DNS

iptables -t mangle -A OUTPUT -o $LAN -p udp –ipv4 -s $RSS -m pkttype –pkt-type unicast –dport domain -m \
state –state NEW,ESTABLISHED,RELATED -j FAST_DNS
##############################################################################################

###################
# CHECK_TCP_FLAGS #
##############################################################################################
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ACK,FIN FIN -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ACK,PSH PSH -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ACK,URG URG -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags FIN,RST FIN,RST -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags SYN,FIN SYN,FIN -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags SYN,RST SYN,RST -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ALL ALL -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ALL NONE -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ALL FIN,PSH,URG -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ALL SYN,FIN,PSH,URG -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ALL SYN,RST,ACK,FIN,URG -j LOGDROP_TCP_FLAGS

iptables -A LOGDROP_TCP_FLAGS -m limit –limit 1/s -j LOG –log-tcp-options –log-prefix \
β€œ[IPTABLES: BAD TCP FLAGS]”

iptables -A LOGDROP_TCP_FLAGS -j DROP
##############################################################################################

############
# FAST_DNS #
##############################################################################################
iptables -t mangle -A FAST_DNS -p udp -d $DNS_SERVER1 -j TOS –set-tos Minimize-Delay
iptables -t mangle -A FAST_DNS -p udp -d $DNS_SERVER2 -j TOS –set-tos Minimize-Delay
iptables -t mangle -A FAST_DNS -p tcp -d $DNS_SERVER1 -j TOS –set-tos Minimize-Delay
iptables -t mangle -A FAST_DNS -p tcp -d $DNS_SERVER2 -j TOS –set-tos Minimize-Delay
##############################################################################################

# FLOW IDENTIFICATION #
source β€œ/etc/firewall.flows”

############
# NAT_OUT #
##############################################################################################
iptables -t nat -A NAT_OUT -j MASQUERADE –random
##############################################################################################

###############
# FORWARD OUT #
##############################################################################################
# Potential Malware traffic
# If not dropped here, they would have been blocked by the default policy
# However, we take the opportunity to save them in a β€œbad_traffic” table
# This table enables us to block LAN's hosts trying to access too many malware ports
# Thus being potentially infected (and requiring an antivirus analysis)
#
# As soon as a LAN host has hit 5 times rules below within 2mn, DROP all forward out from that host
iptables -A FORWARD_OUT -p tcp -m recent –name bad_traffic –rcheck –rttl –hitcount 5 –seconds 120 -j \
LOGDROP_MALWARE

iptables -A FORWARD_OUT -p tcp –dport 139 -m recent –name bad_traffic –set -j LOGDROP_BADPORT
iptables -A FORWARD_OUT -p tcp –dport 445 -m recent –name bad_traffic –set -j LOGDROP_BADPORT
iptables -A FORWARD_OUT -p tcp –dport 135 -m recent –name bad_traffic –set -j LOGDROP_BADPORT
iptables -A FORWARD_OUT -p tcp –dport 6667 -m recent –name bad_traffic –set -j LOGDROP_BADPORT
iptables -A FORWARD_OUT -p tcp –dport 1433:1434 -m recent –name bad_traffic –set -j LOGDROP_BADPORT
iptables -A FORWARD_OUT -p udp –dport 1433:1434 -m recent –name bad_traffic –set -j LOGDROP_BADPORT
iptables -A LOGDROP_BADPORT -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: BAD PORT]”
iptables -A LOGDROP_BADPORT -j DROP
iptables -A LOGDROP_MALWARE -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: INFECTED HOST]”
iptables -A LOGDROP_MALWARE -j DROP

# Allowed ports
iptables -A FORWARD_OUT -p tcp –sport $UNPRIV_PORTS -m multiport –dports ftp,http,https,8080 -j ACCEPT

# Allow ESTABLISHED and RELATED connections to other ports, required for FTP for instance
iptables -A FORWARD_OUT -p tcp –sport $UNPRIV_PORTS –dport $UNPRIV_PORTS -m state –state \
ESTABLISHED,RELATED -j ACCEPT

# NTP Requests (modify the variable at the begining)
iptables -A FORWARD_OUT -p udp -d $NTP_SERVER –sport ntp –dport ntp -j ACCEPT

# Echo request
iptables -A FORWARD_OUT -p icmp -m icmp –icmp-type echo-request -j ACCEPT

# Reject traffic we do not want, many options below (create the corresponding variables)
# iptables -A FORWARD_OUT -p tcp –dport $port_of_a_host_to_block -j REJECT –reject-with \
# icmp-host-prohibited
# iptables -A FORWARD_OUT -d $subnet_to_block -j REJECT –reject-with icmp-net-prohibited

# Block & Log everything else
iptables -A FORWARD_OUT -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: FORWARD_OUT]”
iptables -A FORWARD_OUT -j DROP
##############################################################################################

##############
# FORWARD_IN #
##############################################################################################
# Allow forwarding of incoming established or related flows, with a TTL > 10
iptables -A FORWARD_IN -m ttl –ttl-gt 10 -j ACCEPT

# Block & Log everything else
iptables -A FORWARD_IN -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: FORWARD_IN]”
iptables -A FORWARD_IN -j DROP
##############################################################################################

##########
# LAN_IN #
##############################################################################################
# Allow DHCP broadcasts from the inside
iptables -A LAN_IN -i $LAN -p udp –sport 67:68 –dport 67:68 -j ACCEPT

# Allow DNS queries from the LAN to the Raspberry Security Syste,
iptables -A LAN_IN -i $LAN -p udp –sport $UNPRIV_PORTS –dport 53 -j ACCEPT
iptables -A LAN_IN -i $LAN -p tcp –sport $UNPRIV_PORTS –dport 53 -j ACCEPT

# SSH connections
# (you may add a check for the remote OS)
iptables -A LAN_IN -i $LAN -p tcp –sport $UNPRIV_PORTS –dport $SSH -j ACCEPT

# ICMP LAN (Type 3 = unreachable [destination|port|protocol])
iptables -A LAN_IN -p icmp -m icmp –icmp-type echo-request -j ACCEPT
iptables -A LAN_IN -p icmp -m icmp –icmp-type 3 -j ACCEPT

# Block & Log everything else
iptables -A LAN_IN -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: LAN_IN]”
iptables -A LAN_IN -j DROP
##############################################################################################

##################
# LAN_BROADCAST #
##############################################################################################
# Allow DHCP broadcasts from the inside
iptables -A LAN_BROADCAST -i $LAN -p udp –sport 67:68 –dport 67:68 -j ACCEPT
# Block everything else (do not bother to log broadcast traffic)
iptables -A LAN_BROADCAST -j DROP
##############################################################################################

###########################
# INTERNET_GATEWAY #
##############################################################################################
# Allow already established connections from RSS to Internet to come back to RSS
iptables -A INTERNET_GATEWAY -p all -j ACCEPT
##############################################################################################

########################
# CHAINE GATEWAY_LAN #
##############################################################################################
# Block potential ICMP redirect sent from us (could be caused by a misconfigured sysctl)
iptables -A GATEWAY_LAN -p icmp -m icmp –icmp-type redirect -m limit –limit 1/s -j LOG –log-prefix \
β€œ[IPTABLES: ICMP REDIRECT]”

iptables -A GATEWAY_LAN -p icmp -m icmp –icmp-type redirect -j DROP

# Allow LAN established connections to Raspberry to come back to the LAN
iptables -A GATEWAY_LAN -p tcp -m state –state ESTABLISHED,RELATED -j ACCEPT
iptables -A GATEWAY_LAN -p udp -m state –state ESTABLISHED,RELATED -j ACCEPT
iptables -A GATEWAY_LAN -p icmp -m state –state ESTABLISHED,RELATED -j ACCEPT

# Allow DHCP related traffic
iptables -A GATEWAY_LAN -p udp –sport 67:68 –dport 67:68 -j ACCEPT

# Allow Raspi to ping the LAN
iptables -A GATEWAY_LAN -p icmp -m icmp –icmp-type echo-request -m state –state NEW -j ACCEPT

# Block & Log everything else
iptables -A GATEWAY_LAN -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: GATEWAY_LAN]”
iptables -A GATEWAY_LAN -j DROP
##############################################################################################

#####################
# GATEWAY_BROADCAST #
##############################################################################################
# Allow broadcast DHCP replies from RSS
iptables -A GATEWAY_BROADCAST -p udp –sport 67:68 –dport 67:68 -j ACCEPT

# Block & Log everything else
iptables -A GATEWAY_BROADCAST -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: GATEWAY_BROADCAST]”
iptables -A GATEWAY_BROADCAST -j DROP
##############################################################################################

####################
# GATEWAY_INTERNET #
##############################################################################################
# Allow new connections from Raspberry (necessary for updates, installing packages, etc…)
# I do not run updates the night, consequently there is no need for the rule to be active 24/24
iptables -A GATEWAY_INTERNET -p tcp -m multiport –dports ftp,http,https -m time –timestart 09:00 –timestop \
23:00 -j ACCEPT

# RΓ©solutions DNS
iptables -A GATEWAY_INTERNET -p udp –sport $UNPRIV_PORTS -d $DNS_SERVER1 –dport domain -j ACCEPT
iptables -A GATEWAY_INTERNET -p udp –sport $UNPRIV_PORTS -d $DNS_SERVER2 –dport domain -j ACCEPT
iptables -A GATEWAY_INTERNET -p tcp –sport $UNPRIV_PORTS -d $DNS_SERVER1 –dport domain -j ACCEPT
iptables -A GATEWAY_INTERNET -p tcp –sport $UNPRIV_PORTS -d $DNS_SERVER2 –dport domain -j ACCEPT

# Happens when reloading firewall rules
iptables -A GATEWAY_INTERNET -p icmp -m icmp –icmp-type port-unreachable -d $DNS_SERVER1 -j DROP
iptables -A GATEWAY_INTERNET -p icmp -m icmp –icmp-type port-unreachable -d $DNS_SERVER2 -j DROP

# Allow NTP
iptables -A GATEWAY_INTERNET -p udp –dport ntp -j ACCEPT

# Block & Log everything else
iptables -A GATEWAY_INTERNET -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: GATEWAY_INTERNET]”
iptables -A GATEWAY_INTERNET -j DROP
##############################################################################################

## RULES END ##
rules_number=`egrep β€˜\-j' /etc/firewall.advanced | wc -l`
flows_number=`egrep β€˜\-j' /etc/firewall.flows | wc -l`
total_rules=$(( rules_number+flows_number ))
echo β€œβ€
echo β€œ$total_rules rules loaded.”
echo β€œβ€

B – Basic ruleset
This script basically does the following :
– Blocks inbound/outbound invalid TCP flags (even from established flows)
– Optimises DNS queries (IP TOS field)
– Adds randomness to the NAT process
– Drops inbound packets with low TTL (could mean a ttl expiry attack or a traceroute)

This ruleset allows everything from your LAN to be forwarded on the Internet, thus theoretically not requiring to be modified afterwards. If you want to add an extra layer of network security for your grandmother or parents for instance, but that you cannot expect them to modify iptables rules(!), I think that this ruleset is more appropriate.

$ sudo vi /etc/firewall.simple
#!/bin/bash

# Date August 2012
# Author : Guillaume Kaddouch
# URL : http://networkfilter.blogspot.com
# Version : Standard 1.0

echo β€œSetting up variables”
# VARIABLES TO CUSTOMISE TO MATCH YOUR NETWORK
LAN=”eth0β€³
LAN_SUBNET=”192.168.1.0/24β€³
DHCP_RANGE=”192.168.1.10-192.168.1.20β€³
DNS_SERVER1=”8.8.8.8β€³
DNS_SERVER2=”208.67.222.222β€³
RSS=”192.168.1.3β€³
MODEM_ROUTER=”192.168.1.1β€³
UNPRIV_PORTS=”1024:65535β€³
SSH=”15507β€³
NTP_SERVER=”65.55.21.22β€³

echo β€œFlushing existing chains and rules…”
# FLUSHING CHAINS & RULES
iptables -t filter -F
iptables -t filter -X
iptables -t nat -F
iptables -t nat -X
iptables -t mangle -F
iptables -t mangle -X

echo β€œSetting up default policies”
# DEFAULT POLICIES
iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP

# LOOPBACK
iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT

echo β€œCreating chains”

# CHAIN TO CHECK, LOG, AND OPTIMISE
iptables -N CHECK_TCP_FLAGS
iptables -N LOGDROP_TCP_FLAGS
iptables -t mangle -N FAST_DNS

echo β€œLoading rules”
#################################
# PROTOCOL CHECK & OPTIMIZATION #
##############################################################################################
iptables -A FORWARD -i $LAN -p tcp –ipv4 -j CHECK_TCP_FLAGS
iptables -A INPUT -i $LAN -p tcp –ipv4 -j CHECK_TCP_FLAGS

iptables -t mangle -A OUTPUT -o $LAN -p tcp –ipv4 -s $RSS -m pkttype –pkt-type unicast –dport domain \
-m state –state NEW,ESTABLISHED,RELATED -j FAST_DNS

iptables -t mangle -A OUTPUT -o $LAN -p udp –ipv4 -s $RSS -m pkttype –pkt-type unicast –dport domain \
-m state –state NEW,ESTABLISHED,RELATED -j FAST_DNS
##############################################################################################

###################
# CHECK_TCP_FLAGS #
##############################################################################################
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ACK,FIN FIN -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ACK,PSH PSH -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ACK,URG URG -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags FIN,RST FIN,RST -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags SYN,FIN SYN,FIN -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags SYN,RST SYN,RST -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ALL ALL -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ALL NONE -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ALL FIN,PSH,URG -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ALL SYN,FIN,PSH,URG -j LOGDROP_TCP_FLAGS
iptables -A CHECK_TCP_FLAGS -p tcp –tcp-flags ALL SYN,RST,ACK,FIN,URG -j LOGDROP_TCP_FLAGS

iptables -A LOGDROP_TCP_FLAGS -m limit –limit 1/s -j LOG –log-tcp-options –log-prefix \
β€œ[IPTABLES: BAD TCP FLAGS]”

iptables -A LOGDROP_TCP_FLAGS -j DROP
##############################################################################################

############
# FAST_DNS #
##############################################################################################
iptables -t mangle -A FAST_DNS -p udp -d $DNS_SERVER1 -j TOS –set-tos Minimize-Delay
iptables -t mangle -A FAST_DNS -p udp -d $DNS_SERVER2 -j TOS –set-tos Minimize-Delay
iptables -t mangle -A FAST_DNS -p tcp -d $DNS_SERVER1 -j TOS –set-tos Minimize-Delay
iptables -t mangle -A FAST_DNS -p tcp -d $DNS_SERVER2 -j TOS –set-tos Minimize-Delay
##############################################################################################

#######
# NAT #
##############################################################################################
iptables -t nat -A POSTROUTING -o $LAN ! -d $LAN_SUBNET -m state –state NEW,ESTABLISHED,RELATED -j MASQUERADE\
–random
##############################################################################################

###########
# FORWARD #
##############################################################################################
# Allow outgoing forward of any connection
iptables -A FORWARD -p tcp -i $LAN -s $LAN_SUBNET ! -d $LAN_SUBNET -m state –state NEW,ESTABLISHED,RELATED \
-j ACCEPT

iptables -A FORWARD -p udp -i $LAN -s $LAN_SUBNET ! -d $LAN_SUBNET -m state –state NEW,ESTABLISHED,RELATED \
-j ACCEPT

iptables -A FORWARD -p icmp -i $LAN -s $LAN_SUBNET ! -d $LAN_SUBNET -m state –state NEW,ESTABLISHED,RELATED \
-j ACCEPT

# Allow incoming forward of established or related connections with TTL greater than 10
iptables -A FORWARD -p tcp -i $LAN ! -s $LAN_SUBNET -d $LAN_SUBNET -m state –state ESTABLISHED,RELATED -m \
ttl –ttl-gt 10 -j ACCEPT

iptables -A FORWARD -p udp -i $LAN ! -s $LAN_SUBNET -d $LAN_SUBNET -m state –state ESTABLISHED,RELATED -m \
ttl –ttl-gt 10 -j ACCEPT

iptables -A FORWARD -p icmp -i $LAN ! -s $LAN_SUBNET -d $LAN_SUBNET -m state –state ESTABLISHED,RELATED -m \
ttl –ttl-gt 10 -j ACCEPT
##############################################################################################

#########
# INPUT #
##############################################################################################
# Allow DHCP broadcasts from the inside
iptables -A INPUT -i $LAN -p udp -s $LAN_SUBNET –sport 67:68 –dport 67:68 -j ACCEPT

# Allow DNS queries from the LAN to the Raspberry
iptables -A INPUT -i $LAN -p udp -s $LAN_SUBNET –sport $UNPRIV_PORTS -d $RSS –dport 53 -j ACCEPT
iptables -A INPUT -i $LAN -p tcp -s $LAN_SUBNET –sport $UNPRIV_PORTS -d $RSS –dport 53 -j ACCEPT

# SSH connections
iptables -A INPUT -i $LAN -p tcp -s $LAN_SUBNET –sport $UNPRIV_PORTS -d $RSS –dport $SSH -j ACCEPT

# ICMP LAN (Type 3 = unreachable [destination|port|protocol])
iptables -A INPUT -p icmp -m icmp –icmp-type echo-request -s $LAN_SUBNET -d $RSS -j ACCEPT
iptables -A INPUT -p icmp -m icmp –icmp-type 3 -s $LAN_SUBNET -d $RSS -j ACCEPT

# Allow already established connections from Raspberry to Internet to come back to itl
iptables -A INPUT -i $LAN ! -s $LAN_SUBNET -d $RSS -p tcp -m state –state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -i $LAN ! -s $LAN_SUBNET -d $RSS -p udp -m state –state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -i $LAN ! -s $LAN_SUBNET -d $RSS -p icmp -m state –state ESTABLISHED,RELATED -j ACCEPT
##############################################################################################

###########
# OUTPUT #
##############################################################################################
# Block potential ICMP redirect sent from us (could be caused by a misconfigured sysctl)
iptables -A OUTPUT -o $LAN -p icmp -m icmp –icmp-type redirect -m limit –limit 1/s -j LOG –log-prefix \
β€œ[IPTABLES: ICMP REDIRECT]”

iptables -A OUTPUT -o $LAN -p icmp -m icmp –icmp-type redirect -j DROP

# Allow LAN established connections to the Raspi to come back to the LAN
iptables -A OUTPUT -o $LAN -p tcp -s $RSS -d $LAN_SUBNET -m state –state ESTABLISHED,RELATED -j ACCEPT
iptables -A OUTPUT -o $LAN -p udp -s $RSS -d $LAN_SUBNET -m state –state ESTABLISHED,RELATED -j ACCEPT
iptables -A OUTPUT -o $LAN -p icmp -s $RSS -d $LAN_SUBNET -m state –state ESTABLISHED,RELATED -j ACCEPT

# Allow DHCP related traffic
iptables -A OUTPUT -o $LAN -p udp -s $RSS -d $LAN_SUBNET –sport 67:68 –dport 67:68 -j ACCEPT

# Allow Raspberry to ping the LAN
iptables -A OUTPUT -o $LAN -p icmp -m icmp –icmp-type echo-request -s $RSS -d $LAN_SUBNET -m state \
–state NEW -j ACCEPT

# Allow new connections from Raspberry (necessary for updates, installing packages, etc…)
iptables -A OUTPUT -o $LAN -p tcp -s $RSS ! -d $LAN_SUBNET -m state –state NEW,ESTABLISHED,RELATED \
-j ACCEPT

iptables -A OUTPUT -o $LAN -p udp -s $RSS ! -d $LAN_SUBNET -m state –state NEW,ESTABLISHED,RELATED \
-j ACCEPT

iptables -A OUTPUT -o $LAN -p icmp -s $RSS ! -d $LAN_SUBNET -m state –state NEW,ESTABLISHED,RELATED \
-j ACCEPT

# DNS requests
iptables -A OUTPUT -o $LAN -p udp -s $RSS –sport $UNPRIV_PORTS -d $DNS_SERVER1 –dport domain -j ACCEPT
iptables -A OUTPUT -o $LAN -p udp -s $RSS –sport $UNPRIV_PORTS -d $DNS_SERVER2 –dport domain -j ACCEPT
iptables -A OUTPUT -o $LAN -p tcp -s $RSS –sport $UNPRIV_PORTS -d $DNS_SERVER1 –dport domain -j ACCEPT
iptables -A OUTPUT -o $LAN -p tcp -s $RSS –sport $UNPRIV_PORTS -d $DNS_SERVER2 –dport domain -j ACCEPT
# Allow NTP
iptables -A OUTPUT -o $LAN -p udp –dport ntp -s $RSS -j ACCEPT
##############################################################################################

iptables -A INPUT -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: INPUT DROP]”
iptables -A INPUT -j DROP
iptables -A OUTPUT -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: OUTPUT DROP]”
iptables -A OUTPUT -j DROP
iptables -A FORWARD -m limit –limit 1/s -j LOG –log-prefix β€œ[IPTABLES: FORWARD DROP]”
iptables -A FORWARD -j DROP

## RULES END ##
rules_number=`egrep β€˜\-j' /etc/firewall.simple | wc -l`
echo β€œβ€
echo β€œ$rules_number rules loaded.”
echo β€œβ€

These two rulesets are just examples, if you have one ready use your own.

To load iptables rules at startup, one way is to do as follow :
$ sudo vi /etc/rc.local
echo β€œLoading iptables rules”
/etc/firewall.VERSION >> /dev/nul

Replace VERSION with either β€œadvanced” or β€œsimple”, without quotes, depending on the script you are using.

If you want to display alerts in realtime, type the following :
$ sudo tail -f /var/log/iptables.log

Step 12: Syslog

Security warnings aare useless if they're not logged. You also should consider how long you want to keep your logs. For private use 12 weeks are enough

Now let's set a log rotation time to keep logs 3 months :
$ sudo vi /etc/logrotate.conf
# see β€œman logrotate” for details
# rotate log files weekly
weekly

# keep 12 weeks worth of backlogs
rotate 12

Step 13: SNORT

Snort is one of the best open source Network Intrusion Detection System (NIDS). Looking at packets payload is what cannot be done by iptables efficiently (or only in very basic forms, by looking at strings with the β€œ-m string” module). Snort looks deeper into packets payloads allowing it to detect malicious traffic.

SNORT

The major problem here is to get it running on the Raspberry with it's CPU and RAM limitations

First we have to install it:

$ sudo pacman -S snort

To shrink it down we'll do our first modifications:

$ sudo vi /etc/snort/snort.conf
# Step 1 : variables
#########################################################################################################################
ipvar HOME_NET [192.168.1.0/24]
ipvar EXTERNAL_NET !$HOME_NET
ipvar DNS_SERVERS [192.168.1.3]
ipvar SMTP_SERVERS $HOME_NET
ipvar HTTP_SERVERS $HOME_NET
ipvar SQL_SERVERS $HOME_NET
ipvar TELNET_SERVERS $HOME_NET
ipvar FTP_SERVERS $HOME_NET
ipvar SIP_SERVERS $HOME_NET
portvar HTTP_PORTS 80
portvar ORACLE_PORTS 1024:
portvar FTP_PORTS [21,2100,3535]
portvar SIP_PORTS [5060,5061,5600]
portvar FILE_DATA_PORTS [$HTTP_PORTS,110,143]
ipvar SSH_SERVERS [192.168.1.3]
portvar SHELLCODE_PORTS !80
portvar SSH_PORTS [22,15507]
portvar GTP_PORTS [2123,2152,3386]
ipvar AIM_SERVERS [64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.200.0/24,205.188.3.0/24,205.188.5.0/24,205.188.7.0/24,205.188.9.0/24,205.188.153.0/24,205.188.179.0/24,205.188.248.0/24]

var RULE_PATH /etc/snort/rules
var SO_RULE_PATH ../so_rules
var PREPROC_RULE_PATH ../preproc_rules
var WHITE_LIST_PATH $RULE_PATH
var BLACK_LIST_PATH $RULE_PATH

# Step #2: Configure the decoder. For more information, see README.decode
#########################################################################################################################
config disable_decode_alerts
config disable_tcpopt_experimental_alerts
config disable_tcpopt_obsolete_alerts
config disable_tcpopt_ttcp_alerts
config disable_tcpopt_alerts
config disable_ipopt_alerts
config checksum_mode: all

# Step #3: Configure the base detection engine. For more information, see README.decode
#########################################################################################################################
config pcre_match_limit: 3500
config pcre_match_limit_recursion: 1500

# This setting is very important :
# β€œlowmem” is required for Snort to run with low memory
config detection: search-method lowmem search-optimize max-pattern-len 20

config event_queue: max_queue 8 log 3 order_events content_length
config paf_max: 16000

# Step #4: Configure dynamic loaded libraries.
#########################################################################################################################
dynamicpreprocessor directory /usr/lib/snort_dynamicpreprocessor/
dynamicengine /usr/lib/snort_dynamicengine/libsf_engine.so

# Step #5: Configure preprocessors
#########################################################################################################################
preprocessor normalize_ip4
preprocessor normalize_tcp: ips ecn stream
preprocessor normalize_icmp4
preprocessor normalize_ip6
preprocessor normalize_icmp6
preprocessor frag3_global: max_frags 65536
preprocessor frag3_engine: policy windows detect_anomalies overlap_limit 10 min_fragment_length 100 timeout 180

# Target-Based stateful inspection/stream reassembly. For more inforation, see README.stream5
preprocessor stream5_global: track_tcp yes, \
track_udp yes, \
track_icmp no, \
max_tcp 262144, \
max_udp 131072, \
max_active_responses 2, \
min_response_seconds 5
preprocessor stream5_tcp: policy windows, detect_anomalies, require_3whs 180, \
overlap_limit 10, small_segments 3 bytes 150, timeout 180, \
ports client 21 22 23 25 42 53 79 109 110 111 113 119 135 136 137 139 143 \
161 445 513 514 587 593 691 1433 1521 2100 3306 6070 6665 6666 6667 6668 6669 \
7000 8181 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779, \
ports both 80 81 311 443 465 563 591 593 636 901 989 992 993 994 995 1220 1414 1830 2301 2381 2809 3128 3702 4343 5250 7907 7001 7145 7510 7802 7777 7779 \
7801 7900 7901 7902 7903 7904 7905 7906 7908 7909 7910 7911 7912 7913 7914 7915 7916 \
7917 7918 7919 7920 8000 8008 8014 8028 8080 8088 8118 8123 8180 8243 8280 8800 8888 8899 9080 9090 9091 9443 9999 11371 55555
preprocessor stream5_udp: timeout 180

# HTTP normalization and anomaly detection. For more information, see README.http_inspect
preprocessor http_inspect: global iis_unicode_map unicode.map 1252 compress_depth 65535 decompress_depth 65535
preprocessor http_inspect_server: server default \
http_methods { GET POST PUT SEARCH MKCOL COPY MOVE LOCK UNLOCK NOTIFY POLL BCOPY BDELETE BMOVE LINK UNLINK OPTIONS HEAD DELETE TRACE TRACK CONNECT SOURCE SUBSCRIBE UNSUBSCRIBE PROPFIND PROPPATCH BPROPFIND BPROPPATCH RPC_CONNECT PROXY_SUCCESS BITS_POST CCM_POST SMS_POST RPC_IN_DATA RPC_OUT_DATA RPC_ECHO_DATA } \
chunk_length 500000 \
server_flow_depth 0 \
client_flow_depth 0 \
post_depth 65495 \
oversize_dir_length 500 \
max_header_length 750 \
max_headers 100 \
max_spaces 0 \
small_chunk_length { 10 5 } \
ports { 80 81 311 591 593 901 1220 1414 1830 2301 2381 2809 3128 3702 4343 5250 7001 7145 7510 7777 7779 8000 8008 8014 8028 8080 8088 8118 8123 8180 8181 8243 8280 8800 8888 8899 9080 9090 9091 9443 9999 11371 55555 } \
non_rfc_char { 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 } \
enable_cookie \
extended_response_inspection \
inspect_gzip \
normalize_utf \
unlimited_decompress \
normalize_javascript \
apache_whitespace no \
ascii no \
bare_byte no \
directory no \
double_decode no \
iis_backslash no \
iis_delimiter no \
iis_unicode no \
multi_slash no \
utf_8 no \
u_encode yes \
webroot no

# ONC-RPC normalization and anomaly detection. For more information, see the Snort Manual, Configuring Snort – Preprocessors – RPC Decode
preprocessor rpc_decode: 111 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 no_alert_multiple_requests no_alert_large_fragments no_alert_incomplete

# Back Orifice detection.
preprocessor bo

# FTP / Telnet normalization and anomaly detection. For more information, see README.ftptelnet
preprocessor ftp_telnet: global inspection_type stateful encrypted_traffic no
preprocessor ftp_telnet_protocol: telnet \
ayt_attack_thresh 20 \
normalize ports { 23 } \
detect_anomalies
preprocessor ftp_telnet_protocol: ftp server default \
def_max_param_len 100 \
ports { 21 2100 3535 } \
telnet_cmds yes \
ignore_telnet_erase_cmds yes \
ftp_cmds { ABOR ACCT ADAT ALLO APPE AUTH CCC CDUP } \
ftp_cmds { CEL CLNT CMD CONF CWD DELE ENC EPRT } \
ftp_cmds { EPSV ESTA ESTP FEAT HELP LANG LIST LPRT } \
ftp_cmds { LPSV MACB MAIL MDTM MIC MKD MLSD MLST } \
ftp_cmds { MODE NLST NOOP OPTS PASS PASV PBSZ PORT } \
ftp_cmds { PROT PWD QUIT REIN REST RETR RMD RNFR } \
ftp_cmds { RNTO SDUP SITE SIZE SMNT STAT STOR STOU } \
ftp_cmds { STRU SYST TEST TYPE USER XCUP XCRC XCWD } \
ftp_cmds { XMAS XMD5 XMKD XPWD XRCP XRMD XRSQ XSEM } \
ftp_cmds { XSEN XSHA1 XSHA256 } \
alt_max_param_len 0 { ABOR CCC CDUP ESTA FEAT LPSV NOOP PASV PWD QUIT REIN STOU SYST XCUP XPWD } \
alt_max_param_len 200 { ALLO APPE CMD HELP NLST RETR RNFR STOR STOU XMKD } \
alt_max_param_len 256 { CWD RNTO } \
alt_max_param_len 400 { PORT } \
alt_max_param_len 512 { SIZE } \
chk_str_fmt { ACCT ADAT ALLO APPE AUTH CEL CLNT CMD } \
chk_str_fmt { CONF CWD DELE ENC EPRT EPSV ESTP HELP } \
chk_str_fmt { LANG LIST LPRT MACB MAIL MDTM MIC MKD } \
chk_str_fmt { MLSD MLST MODE NLST OPTS PASS PBSZ PORT } \
chk_str_fmt { PROT REST RETR RMD RNFR RNTO SDUP SITE } \
chk_str_fmt { SIZE SMNT STAT STOR STRU TEST TYPE USER } \
chk_str_fmt { XCRC XCWD XMAS XMD5 XMKD XRCP XRMD XRSQ } \
chk_str_fmt { XSEM XSEN XSHA1 XSHA256 } \
cmd_validity ALLO < int [ char R int ] > \
cmd_validity EPSV < [ { char 12 | char A char L char L } ] > \
cmd_validity MACB < string > \
cmd_validity MDTM < [ date nnnnnnnnnnnnnn[.n[n[n]]] ] string > \
cmd_validity MODE < char ASBCZ > \
cmd_validity PORT < host_port > \
cmd_validity PROT < char CSEP > \
cmd_validity STRU < char FRPO [ string ] > \
cmd_validity TYPE < { char AE [ char NTC ] | char I | char L [ number ] } >
preprocessor ftp_telnet_protocol: ftp client default \
max_resp_len 256 \
bounce yes \
ignore_telnet_erase_cmds yes \
telnet_cmds yes
# SMTP normalization and anomaly detection. For more information, see README.SMTP
preprocessor smtp: ports { 25 465 587 691 } \
inspection_type stateful \
b64_decode_depth 0 \
qp_decode_depth 0 \
bitenc_decode_depth 0 \
uu_decode_depth 0 \
log_mailfrom \
log_rcptto \
log_filename \
log_email_hdrs \
normalize cmds \
normalize_cmds { ATRN AUTH BDAT CHUNKING DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN EVFY } \
normalize_cmds { EXPN HELO HELP IDENT MAIL NOOP ONEX QUEU QUIT RCPT RSET SAML SEND SOML } \
normalize_cmds { STARTTLS TICK TIME TURN TURNME VERB VRFY X-ADAT X-DRCP X-ERCP X-EXCH50 } \
normalize_cmds { X-EXPS X-LINK2STATE XADR XAUTH XCIR XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR } \
max_command_line_len 512 \
max_header_line_len 1000 \

max_response_line_len 512 \
alt_max_command_line_len 260 { MAIL } \
alt_max_command_line_len 300 { RCPT } \
alt_max_command_line_len 500 { HELP HELO ETRN EHLO } \
alt_max_command_line_len 255 { EXPN VRFY ATRN SIZE BDAT DEBUG EMAL ESAM ESND ESOM EVFY IDENT NOOP RSET } \
alt_max_command_line_len 246 { SEND SAML SOML AUTH TURN ETRN DATA RSET QUIT ONEX QUEU STARTTLS TICK TIME TURNME VERB X-EXPS X-LINK2STATE XADR XAUTH XCIR XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR } \
valid_cmds { ATRN AUTH BDAT CHUNKING DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN EVFY } \
valid_cmds { EXPN HELO HELP IDENT MAIL NOOP ONEX QUEU QUIT RCPT RSET SAML SEND SOML } \
valid_cmds { STARTTLS TICK TIME TURN TURNME VERB VRFY X-ADAT X-DRCP X-ERCP X-EXCH50 } \
valid_cmds { X-EXPS X-LINK2STATE XADR XAUTH XCIR XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR } \
xlink2state { enabled }

# Portscan detection. For more information, see README.sfportscan
# preprocessor sfportscan: proto { all } memcap { 10000000 } sense_level { low }

# ARP spoof detection. For more information, see the Snort Manual – Configuring Snort – Preprocessors – ARP Spoof Preprocessor
# preprocessor arpspoof
# preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00

# SSH anomaly detection. For more information, see README.ssh
preprocessor ssh: server_ports { 22 15507 } \
autodetect \
max_client_bytes 19600 \
max_encrypted_packets 20 \
max_server_version_len 100 \
enable_respoverflow enable_ssh1crc32 \
enable_srvoverflow enable_protomismatch

# SMB / DCE-RPC normalization and anomaly detection. For more information, see README.dcerpc2
preprocessor dcerpc2: memcap 102400, events [co ]
preprocessor dcerpc2_server: default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-server 593], \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 1025:], \
smb_max_chain 3, smb_invalid_shares [β€œC$”, β€œD$”, β€œADMIN$”]

# DNS anomaly detection. For more information, see README.dns
preprocessor dns: ports { 53 } enable_rdata_overflow

# SSL anomaly detection and traffic bypass. For more information, see README.ssl
preprocessor ssl: ports { 443 465 563 636 989 992 993 994 995 7801 7802 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 }, trustservers, noinspect_encrypted

# SDF sensitive data preprocessor. For more information see README.sensitive_data
preprocessor sensitive_data: alert_threshold 25

# Modbus preprocessor. For more information see README.modbus
preprocessor modbus: ports { 502 }

# DNP3 preprocessor. For more information see README.dnp3
preprocessor dnp3: ports { 20000 } \
memcap 262144 \
check_crc

# Reputation preprocessor. For more information see README.reputation
preprocessor reputation: \
memcap 500, \
priority whitelist, \
nested_ip inner, \
whitelist $WHITE_LIST_PATH/white_list.rules, \
blacklist $BLACK_LIST_PATH/black_list.rules

# Step #6: Configure output plugins
#########################################################################################################################
include classification.config
include reference.config

# Step #7: Customize your rule set
#########################################################################################################################
include $RULE_PATH/local.rules
# Minimal rules for home NIDS (6 files)
include $RULE_PATH/attack-responses.rules
include $RULE_PATH/backdoor.rules
include $RULE_PATH/botnet-cnc.rules
include $RULE_PATH/spyware-put.rules
include $RULE_PATH/virus.rules
include $RULE_PATH/web-client.rules

# Additional rules (15 files)
include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/ddos.rules
include $RULE_PATH/dns.rules
include $RULE_PATH/dos.rules
include $RULE_PATH/exploit.rules
include $RULE_PATH/ftp.rules
include $RULE_PATH/netbios.rules
include $RULE_PATH/p2p.rules
include $RULE_PATH/phishing-spam.rules
include $RULE_PATH/rpc.rules
include $RULE_PATH/scan.rules
include $RULE_PATH/shellcode.rules
include $RULE_PATH/smtp.rules
include $RULE_PATH/specific-threats.rules
include $RULE_PATH/telnet.rules

## TOTAL FILES = 21 files to load

# Other disabled files : Suit yourself
#include $RULE_PATH/blacklist.rules
#include $RULE_PATH/pop3.rules
#include $RULE_PATH/rservices.rules
#include $RULE_PATH/scada.rules
#include $RULE_PATH/snmp.rules
#include $RULE_PATH/sql.rules
#include $RULE_PATH/tftp.rules
#include $RULE_PATH/voip.rules
#include $RULE_PATH/web-activex.rules
#include $RULE_PATH/web-attacks.rules
#include $RULE_PATH/web-cgi.rules
#include $RULE_PATH/web-coldfusion.rules
#include $RULE_PATH/web-frontpage.rules
#include $RULE_PATH/web-iis.rules
#include $RULE_PATH/web-misc.rules
#include $RULE_PATH/web-php.rules
#include $RULE_PATH/x11.rules

###################################################
# Step #8: Customize your preprocessor and decoder alerts
# For more information, see README.decoder_preproc_rules
###################################################

# decoder and preprocessor event rules
# include $PREPROC_RULE_PATH/preprocessor.rules
# include $PREPROC_RULE_PATH/decoder.rules
# include $PREPROC_RULE_PATH/sensitive-data.rules

###################################################
# Step #9: Customize your Shared Object Snort Rules
# For more information, see http://vrt-sourcefire.blogspot.com/2009/01/using-vrt-certified-shared-object-rules.html
###################################################

# dynamic library rules
# include $SO_RULE_PATH/bad-traffic.rules
# include $SO_RULE_PATH/chat.rules
# include $SO_RULE_PATH/dos.rules
# include $SO_RULE_PATH/exploit.rules
# include $SO_RULE_PATH/icmp.rules
# include $SO_RULE_PATH/imap.rules
# include $SO_RULE_PATH/misc.rules
# include $SO_RULE_PATH/multimedia.rules
# include $SO_RULE_PATH/netbios.rules
# include $SO_RULE_PATH/nntp.rules
# include $SO_RULE_PATH/p2p.rules
# include $SO_RULE_PATH/smtp.rules
# include $SO_RULE_PATH/snmp.rules
# include $SO_RULE_PATH/specific-threats.rules
# include $SO_RULE_PATH/web-activex.rules
# include $SO_RULE_PATH/web-client.rules
# include $SO_RULE_PATH/web-iis.rules
# include $SO_RULE_PATH/web-misc.rules

# Event thresholding or suppression commands. See threshold.conf
include threshold.conf

#include $RULE_PATH/chat.rules
#include $RULE_PATH/content-replace.rules
#include $RULE_PATH/file-identify.rules
#include $RULE_PATH/finger.rules
#include $RULE_PATH/icmp.rules
#include $RULE_PATH/icmp-info.rules
#include $RULE_PATH/imap.rules
#include $RULE_PATH/info.rules
#include $RULE_PATH/misc.rules
#include $RULE_PATH/multimedia.rules
#include $RULE_PATH/mysql.rules
#include $RULE_PATH/nntp.rules
#include $RULE_PATH/oracle.rules
#include $RULE_PATH/other-ids.rules
#include $RULE_PATH/policy.rules
#include $RULE_PATH/pop2.rules

We are acting on three things to help snort using less CPU and memory :
– loading less preprocessors
– loading less rules
– setting the β€œlowmem” parameter

By default, Snort does not have any rule. You must register at https://www.snort.org/signup as a free user to be able to download the free snort rules (one month old). Up to date rulesets require to pay a licence.

Once registered, you will need to generate an β€œOinkCode”, that will enable you to download the last free ruleset. To do so, then you receive the activation email, go to the website loggin, click on β€œGet Rule”, β€œCommand Line”, β€œGet an Oinkcode”, then click β€œGenerate code”.

Once you have it, you can download the ruleset VERSION available (replace it in the command line below, e.g : 2923) :
$ cd /home/rss
$ wget http://www.snort.org/reg-rules/snortrules-snapshot-VERSION.tar.gz/oinkcode -O ./snortrules-snapshot-VERSION.tar.gz

Of course replace the above β€œoinkcode” string by the one you just generated.
$ tar zxpvf ./snortrules-snapshot-VERSION.tar.gz
$ sudo mv ./preproc_rules/ /etc/snort/
$ sudo mv ./rules/ /etc/snort/
$ sudo mv ./so_rules/ /etc/snort/

Create two files Snort will expect :
$ touch /etc/snort/rules/white_list.rules
$ touch /etc/snort/rules/black_list.rules

Check the Snort version installed :
$ sudo snort –version

Now we will create a test alert rule :
$ sudo vi /etc/snort/rules/local.rules
alert icmp any any -> $HOME_NET any (msg:”ICMP test”; sid:10000001;)

Check that Snort's configuration is correct before doing anything (-T parameter) :
$ sudo snort -A console -q -u snort -g snort -c /etc/snort/snort.conf -i eth0 -T

Everything should be ok, if not, check back the /etc/snort.conf to verify your variables (subnets, ports, and paths).

We can do now a real test, launch Snort in console mode and check if Snort is running and if our alert appears on the screen :
$ sudo snort -A console -q -u snort -g snort -c /etc/snort/snort.conf -i eth0

Manually launch β€œping” commands from one of your LAN computer to the Raspberry, it should trigger an alert (CTRL+C to stop the test). If everything is working now, we could be tempted to say it's won, but it's not πŸ™‚

The next logical step is to check Snort startup configuration for the next time you will reboot :
$ sudo vi /etc/conf.d/snort
# Where is the snort.conf file.
SNORT_CONF=”/etc/snort/snort.conf”

# What user account should we run under.
USER=”snort”

# What group account should we run under.
GROUP=”snort”

# define the interface we listen on
INTERFACE=”eth0β€³

# If you are using prelude, delete the β€˜-A fast' option
SNORT_OPTIONS=”-A fast -b -D -p”

Everything seems ok, so let's do a real test by running Snort in daemon mode (-D parameter) :
$ sudo snort -A console -q -u snort -g snort -c /etc/snort/snort.conf -i eth0 -D

It crashes with the error β€œfork: Cannot Allocate Memory”.

I couldn't figure out at first why Snort would run ok while not in daemon, but would not work otherwise. I played with /etc/security/limits.conf to no avail, believing it was some kind of memory allocation limit.

However, when running again Snort as a user process, not as daemon, I noticed in β€œhtop” that Snort allocated virtual memory (more than 290MB) whereas I do not have any swap file! I then supposed it was a good trail to follow, and thanks to the archlinuxarm documentation, created a swap file :
$ sudo dd if=/dev/zero of=/swapfile.img bs=1M count=512
$ sudo mkswap /swapfile.img
$ sudo swapon /swapfile.img

512MB seems enough regarding what Snort is trying to allocate. Also, it is not recommanded on a flash media, like the SD card, to create a swap file, as more writes will be done to the media, shortening it's lifetime. However, the idea here is to allow Snort to allocate the memory, but hoping that it won't in fact need it (we disabled many preprocessor and rules, remember).

Now, Snort should run with sucess :
$ sudo snort -A console -q -u snort -g snort -c /etc/snort/snort.conf -i eth0 -D

Congratulations. Also, you can notice in htop that Snort is actually not using any virtual memory, it just allocated it, which is what we wanted.

Let's settle this by activating the swap at startup, first :
$ sudo vi /etc/fstab
# add this at the end
/swapfile.img none swap sw 0 0

Finally add Snort at startup :
$ sudo vi /etc/rc.conf
DAEMONS=(!hwclock syslog-ng network @crond @sshd @openntpd dnsmasq snort)

Reboot and check that Snort is running, then that your alert rule still triggers :
$ sudo reboot
$ htop
$ sudo tail –f /var/log/snort/alert

If everything is ok, comment your test rule :
$ sudo vi /etc/snort/rules/local.rules

Restart Snort :
$ sudo rc.d restart snort

Regarding performances, for a common browsing I do not notice any slowdown. When I open Google Chrome with 10 or 15 tabs which are all trying to load at once, the Raspberry CPU goes to 100% for a few seconds, like 3 or 4 seconds, but quickly goes back to normal, with no noticeable slowdown in webpage loading.

I think however, regarding the CPU usage when some network traffic happens, that loading more Snort's rules or preprocessor would hinder performances. I find the current tradeoff acceptable regarding security/performance, for home use. Anyway, you can play with the settings if you want more security.

Snort's Rules Update :

If you do not wish to pay anything to have access to updated rules, the available free rules will be one month old. If however you don't mind to pay 30$/year (personal/home use only) for the personal subscription, you will have the most up to date rules for a reasonable price.

Log into your account on snort.org then go to the following link to buy your subscription if you want the latest rules available :
http://www.snort.org/vrt/buy-a-subscription

Now, to update our snort's rules, we will use PulledPork. Check on their website if a newer version has been released since I wrote this article.

$ wget http://pulledpork.googlecode.com/files/pulledpork-0.6.1.tar.gz
$ tar zxpvf ./pulledpork-0.6.1.tar.gz
$ sudo cp pulledpork-0.6.1/etc/*.conf /etc
$ sudo cp pulledpork-0.6.1/pulledpork.pl /usr/local/bin/

$ sudo vi /etc/pulledpork.conf
rule_url=https://www.snort.org/reg-rules/|snortrules-snapshot.tar.gz|
ignore=deleted.rules,experimental.rules,local.rules
temp_path=/tmp
out_path=/etc/snort/rules/
local_rules=/etc/snort/rules/local.rules
sid_msg=/etc/snort/sid-msg.map
sid_changelog=/var/log/sid_changes.log
snort_path=/usr/bin/snort
config_path=/etc/snort/snort.conf
backup=/etc/snort
version=0.6.0

Installing required perl module for pulledpork :
$ sudo pacman -S make
$ sudo pacman -S perl-libwww
$ sudo pacman -S perl-crypt-ssleay
$ sudo pacman -S perl-switch

And now let's start the update manually first :
$ sudo touch /etc/snort/sid-msg.map
$ sudo chown rss:snort /etc/snort/sid-msg.map
$ pulledpork.pl -k -c /etc/pulledpork.conf -K /etc/snort/rules -o /etc/snort/rules

If you are using the paid version, your rule files will begin with β€œVRT-β€œ, you must edit snort.conf and replace the rules loading at the end with :
$ sudo vi /etc/snort/snort.conf
# Minimal rules for home NIDS (5 files)
# if using the licence version
include $RULE_PATH/VRT-indicator-compromise.rules
include $RULE_PATH/VRT-backdoor.rules
include $RULE_PATH/VRT-botnet-cnc.rules
include $RULE_PATH/VRT-spyware-put.rules
include $RULE_PATH/VRT-web-client.rules

# Additional rules (15 files)
# if using the licence version
include $RULE_PATH/VRT-bad-traffic.rules
include $RULE_PATH/VRT-ddos.rules
include $RULE_PATH/VRT-dns.rules
include $RULE_PATH/VRT-dos.rules
include $RULE_PATH/VRT-exploit.rules
include $RULE_PATH/VRT-ftp.rules
include $RULE_PATH/VRT-netbios.rules
include $RULE_PATH/VRT-pua-p2p.rules
include $RULE_PATH/VRT-phishing-spam.rules
include $RULE_PATH/VRT-rpc.rules
include $RULE_PATH/VRT-scan.rules
include $RULE_PATH/VRT-shellcode.rules
include $RULE_PATH/VRT-smtp.rules
include $RULE_PATH/VRT-specific-threats.rules
include $RULE_PATH/VRT-telnet.rules

We have to restart Snort :
$ sudo rc.d stop snort
$ sudo rc.d start snort

Now let's create a task to run pulledpork automatically :
$ crontab -e
# Update Snort rules every Sunday at 12h30
30 12 * * 0 /usr/local/bin/pulledpork.pl -k -c /etc/pulledpork.conf -K /etc/snort/rules -o /etc/snort/rules

# Update Snort rules every Wednesday at 21h00
00 21 * * 3 /usr/local/bin/pulledpork.pl -k -c /etc/pulledpork.conf -K /etc/snort/rules -o /etc/snort/rules

These are examples, I like to schedule two updates per week, but you can change that. Keep in mind however that it would not be wise to schedule the update too often as it uses 100% CPU for more than 5 minutes, and that a little swap is used too (4-5MB).

That's it, you now have a fully working Snort !

Step 14: You're Done (at the Moment…)

I couldn't believe to get this running at first. Network gateway, firewall, DNS/DHCP and last but not least Snort which needs a lot of system ressources. But it works quite well on the Raspberry. See this as a prove of concept. If you want to get deeper you really should think about a morre powerful system. I like it, because it's small, it's simple and it costs not as much as a regular computer you would use for something like that.

If you want to go further, here are some ideas for new add-ons:

– Realtime email notification in case of critical iptables or Snort alerts
– Daily email summary of general iptables or Snort alerts
– SSH certificate based authentication
– Log sending to a remote location for backup
– Increase Snort's security (more preprocessors, more rules)

Source: Raspberry Pi Firewall and Intrusion Detection System


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top