3D Printed Organ-On-Chip

Researcher at Harvard University had been working to build new microphysiological systems (MPS), also known as organs-on-chips, that can mimic the operation of the structure and function of native tissue.

3D Printed Organ-On-Chip

By developing such systems, they are replacing the conventional way of measuring and testing synthetic organs -usually by testing them first on animals.

Although such a solution can help in advancing research and making easy organ-replacement real, but it also somehow costly and considered as laborious.

To build up this system you need a clean room and you have to use a complex, multistep lithographic process. To collect data you also need microscopy or high-speed cameras. Considering also the fact that current MPS typically lack integrated sensors, researchers developed six different inks that integrated soft strain sensors within the micro-architecture of the tissue.

They combined all the steps in one automated procedure using 3D printer. The result was a cardiac microphysiological device — a heart on a chip — with integrated sensors. According to the research paper, these 6 inks were designed based on “piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues”

You can check this video to see this heart in action, and to take a look at the 6 inks 3D printer

Read more: 3D Printed Organ-On-Chip


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top