Coping with rapid technological advances and finding efficient energy solutions are the keys for development of power electronics of the future. A new research had been done in North Carolina State University about increasing the efficiency of high-power switches.
Silicon Carbide is a compound of silicon and carbon with chemical formula SiC. It is a wide bandgap (WBG) semiconductor, that allows devices to operate at much higher voltages, frequencies and temperatures than conventional semiconductor materials.
Researchers came up with a high voltage and high frequency silicon carbide (SiC) power switch that could cost much less than similarly rated SiC power switches. This research may guide to new applications in power converters like medium voltage drives, solid state transformers and high voltage transmissions and circuit breakers.
The new SiC power switch, called FREEDM Super-Cascode Switch, contains a series of 1.2kV SiC power devices to produce a 15 kV and 40 mA output that can transcend the 15 kV SiC MOSFET in ease of adoption and cost – since it costs only one third of the estimated high voltage SiC MOSFETs. In addition, this new switch is capable of operating in a wide range of temperatures and frequencies due to its proficiency in heat dissipation, which is considered an advantage in power devices.
Since there is no high voltage SiC device commercially available at voltage higher than 1.7 kV, as Alex Huang said – Progress Energy Distinguished Professor, he assures that this solution paves the way for power switches to be developed in large quantities with breakdown voltages from 2.4 kV to 15 kV.
Read more: A Cost-efficient Super-Cascode SiC Switch