Coulomb Transistor — A New Concept Where Metal Nanoparticles Are Used In Place Of Semiconductor

A research group at the University of Hamburg has created a unique coulomb transistor that operates on the principle of the voltage control of the electron band gap in metallic quantum-dot nanoparticles. This Single-electron transistor represents an approach to develop less power-consuming microelectronic devices. It will be possible if industry-compatible fabrication and room temperature operation are achieved.

Coulomb Transistor — A New Concept Where Metal Nanoparticles Are Used In Place Of Semiconductor

The concept is based on building stripes of small, colloidal, metal nanoparticles on a back-gate device architecture. Being very tiny, the metallic nanoparticles exhibit semiconductor properties that can be controlled by voltage. The body of this transistor can be operated as a second gate. It results in well-defined and controllable transistor characteristics.

This newly invented Coulomb transistor has three main advantages. The advantages are: on/off ratios above 90%, very reliable and sinusoidal Coulomb oscillations, and room temperature operation. The concept allows for tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as the period, position, and strength of the oscillations.

Though the single-electron transistor (SET) is quite similar to a common field-effect transistor (FET), it does not rely on the semiconductor band gap but instead on the Coulomb energy gap. Transfer characteristics of the SET show periodic on and off states known as Coulomb oscillations. Researchers hope that might render new applications possible in the future.

When a bias voltage is applied to the nanoparticle channel, it becomes clear that conduction in this system is not purely metallic but is controlled by tunnel barriers between individual particles. The transport of charged particles is hindered due to very high potential barrier which depends on the charging energy. Tuning the voltage of an additional gate results in a field effect that continuously shifts the energy levels of the particles and allows for tunneling to occur. This additional gate electrode is separated from the channel by a dielectric layer.

Read more: Coulomb Transistor — A New Concept Where Metal Nanoparticles Are Used In Place Of Semiconductor


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top