Quantum Dots Boost Solar Cells

Quantum Dots Boost Solar Cells

LAKE WALES, Fla—Quantum dots are already being used commercially to boost the output and expand the color range of ultra-high-definition televisions, eliminating the need for the rare earth elements for which China as virtually cornered the market. Quantum dots, however, can also be used to absorb light to boost the output of photovoltaics, photocatalysts, light sensors, and other optoelectronic devices according to Brookhaven National Laboratory (Upton, N.Y.)

Research team showing off their quantum-dot doped nanomaterial (back to front: Chang-Yong Nam and Mircea Cotlet of Brookhaven Lab's Center for Functional Nanomaterials with Stony Brook University graduate students Prahlad Routh and Jia-Shiang Chen).
(Source: Brookhaven)
Research team showing off their quantum-dot doped nanomaterial (back to front: Chang-Yong Nam and Mircea Cotlet of Brookhaven Lab's Center for Functional Nanomaterials with Stony Brook University graduate students Prahlad Routh and Jia-Shiang Chen).
(Source: Brookhaven)

“Our particular 2-D material system (SnS2) [tin disulfide] is similar to Si [silicon], in that it has an indirect band gap, not providing sufficient electroluminescence for light-emitting diodes, but there are other 2-D materials with high luminescence such as MoS2 [molybdenum sulfide] WS2 [tungsten disulfide] which can be used in view of the Qdot-2D hybrid architectures for LEDs,” Mircea Cotlet, the physical chemist who led this work at Brookhaven Lab's Center for Functional Nanomaterials (CFN ), a Department of Energy (DoE) Office of Science User Facility, told EE Times in an exclusive interview.

Instead of emitters, Brookhaven concentrated on receivers of optical energy in layered metal dichalcogenide semiconductors—dual chalcogen anions (ions with more electrons than protons) plus one or more electropositive elements usually sulfides, selenides, and tellurides, rather than oxides—in Brookhaven's case sulfide). Brookhaven did the work with Stony Brook University (including doctoral candidate Prahlad Routh) and the University of Nebraska.

The researchers call their material a hybrid because they dope the electrical conductivity of layered tin disulfide semiconductor with the light harvesting of different spectrums of light from various sized quantum dots. In more detail, the quantum dots absorb the frequency of light corresponding to its diameter, then transfer their energy to the tin disulfide semiconductor. As a result, they prove to be a good candidate for solar light conversion and other similar light sensors.

For More Details: Quantum Dots Boost Solar Cells


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top