Renesas Electronics Corporation announced the successful development of a new low-power SRAM circuit technology that achieves a record ultra-low power consumption of 13.7 nW/Mbit in standby mode. The prototype SRAM also achieves a high-speed readout time of 1.8 ns during active operation. Renesas Electronics applied its 65nm node silicon on thin buried oxide (SOTB) process to develop this record-creating SRAM prototype.
This new low-power SRAM circuit technology can be embedded in application specific standard products (ASSPs) for Internet of Things (IoT), home electronics, and healthcare applications. The fast growth of IoT is requiring all the devices be connected to a wireless network all the time. Hence, products must consume less power to prolong battery life. With this new technology applied, much longer battery life can be achieved enabling maintenance-free applications.
One essential part of the development of IoT applications is the miniaturization of end products. This can be achieved by lowering battery capacity requirement of ASSPs. As an effort to reduce the power consumption in ASSPs for the IoT, there is a technique in which the application is operated in the standby mode and only goes to the active mode when data processing is required.
Now, the conventional way of saving power is to store all important data to an internal/external non-volatile memory and cut off the power supply to the circuit. If the wait time is long enough, this method is effective. But in most of the cases, the device has to switch between standby mode and active mode very quickly causing data-saving and restarting process extremely inefficient. There are even cases where, inversely, this increases power consumption.
Read more: Renesas Electronics Achieves Lowest Embedded SRAM Power of 13.7 nW/Mbit