

Home Automation
with Raspberry Pi®

00_FM.indd 1 2/1/19 1:36 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

DONALD NORRIS has a degree in electrical engineering and an

MBA with a specialization in production management. He is currently

teaching both undergraduate and graduate IT courses at Southern

New Hampshire University. He has also created and taught several

robotics courses there, in addition to many different computer science

and engineering courses. He has over 35 years of teaching experience

as an adjunct professor at a variety of colleges and universities.

Mr. Norris retired from civilian government service with the U.S.

Navy, where he specialized in acoustics related to nuclear submarines

and associated advanced digital signal processing. Since then, he has

spent more than 20 years as a professional software developer using C,

C#, C++, Python, and Java, as well as 5 years as a certified IT security

consultant.

Mr. Norris started a consultancy, Norris Embedded Software

Solutions (dba NESS LLC; www.nessllc.net), that specializes

in developing application solutions using microprocessors and

microcontrollers. He likes to think of himself as a perpetual hobbyist

and geek, and is always trying out new approaches and out-of-the-box

experiments. He is a licensed private pilot, photography buff, amateur

radio operator, and avid health enthusiast.

Besides the present book, Mr. Norris is the author of seven

other McGraw-Hill TAB books, dealing with subjects ranging from

learning programming to Raspberry Pi projects to building your own

quadcopter.

About the Author

00_FM.indd 2 2/1/19 1:36 PM

Donald Norris

New York Chicago San Francisco Athens London Madrid

Mexico City Milan New Delhi Singapore Sydney Toronto

Home Automation
with Raspberry Pi®

Projects Using Google Home™,
Amazon Echo®, and Other

Intelligent Personal Assistants

00_FM.indd 3 2/1/19 1:36 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

Copyright © 2019 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written per-
mission of the publisher, with the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

ISBN: 978-1-26-044036-2
MHID: 1-26-044036-2

The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-044035-5,
MHID: 1-26-044035-4.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use
names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designa-
tions appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training
programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

McGraw-Hill Education, the McGraw-Hill Education logo, TAB, and related trade dress are trademarks or registered trademarks of McGraw-Hill Edu-
cation and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property
of their respective owners. McGraw-Hill Education is not associated with any product or vendor mentioned in this book.

Information contained in this work has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the pos-
sibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms.
Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill Education’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUD-
ING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANT-
ABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions
contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply
to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

This is book is dedicated to my parents, Harry and Esther Norris, who provided me with

a loving and nurturing childhood. Their guidance and wisdom greatly influenced how I

matured and helped me to develop a healthy scientific curiosity. I also wish to acknowledge

my brothers, Herb and Ken, with whom I shared my childhood and who helped me develop

a sense of self-confidence and an ability to be my own person. Finally, I wish to acknowledge

my sister, Lori, who was born when I was about ready to leave my family and strike out on

my own. Lori has consistently demonstrated to me the ability to achieve remarkable goals,

culminating with her attaining the role of adult nurse practitioner (ANP).

00_FM.indd 5 2/1/19 1:36 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

00_FM.indd 6 2/1/19 1:36 PM

This page intentionally left blank

Contents

vii

 Preface . xi

 1 Designing and Building Home Automation Projects 1
Generalized HA Design Approach . 2

Raspberry Pi Setup . 3

Writing the NOOBS Image to a Micro SD Card . 4

Writing the Raspbian Image to a Micro SD Card . 5

Configuring the NOOBS Image . 6

Updating and Upgrading the Raspbian Distribution 10

General-Purpose Input/Output . 11

GPIO Demonstration . 12

Demonstration Hardware Setup . 14

Demonstration Software Setup . 15

The Make Utility . 16

Natural Human Interaction . 16

HAT Module . 17

Microphone Array Module . 21

Pushbutton-LED Combination . 21

Google Voice Assistant Software Installation . 22

Create a Google Account . 22

Log into the Google Cloud . 22

Create a Google Cloud Project . 22

Enable the Google Assistant API . 22

Obtain Credentials . 23

Download and Rename Credentials . 25

Activity Controls . 26

Testing the Voice Kit . 27

Extending the Voice Kit Functionality . 28

Summary . 30

 2 Interfacing a Google Home Device with a Raspberry Pi 31
Google Home Device . 31

Configuring the Google Home Device . 33

Connecting a RasPi to the Google Home Device . 33

ifttt.com . 34

00_FM.indd 7 2/1/19 1:36 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

viii Contents

RasPi Web Server Software . 41

Demonstration Circuit . 43

Test Run . 43

Extending Control Functions . 45

AC-Powered Lamp Demonstration. 45

AC Lamp Applets . 47

Python Web Server Modifications . 47

Test Run . 48

PST2 Wireless Control . 49

Wireless Communications Setup . 49

Test Run . 53

Summary . 53

 3 Raspberry Pi Implements a Google Voice Assistant 55
Audio Setup . 55

Installing and Configuring the Python 3 Environment 57

Installing and Enabling the Google Cloud Project . 58

Authenticating the RasPi to the Google Cloud Platform 60

LED Operations Indicator . 61

Python Script . 62

Test Run . 64

Extending the RasPi Google Home Device . 64

Test Setup . 65

Modified Python Control Script . 66

Test Run . 68

Still More Extending of the RasPi Google Home Device 69

Basic Servo Facts . 69

Test Setup . 70

Python Control Script Incorporating the PWM Option 70

Test Run . 73

Summary . 74

 4 Raspberry Pi GPIO Control with an Amazon Echo 75
Wemo Demonstration . 75

Alexa Skill . 76

Fauxmo . 78

Test Setup . 79

Test Run . 80

Python Control Script . 81

Fauxmo Server . 83

Creating an Alexa Skill from Scratch . 84

Memory Game Skill . 85

Test Run . 89

Building and Configuring the RasPi GPIO Pin Control Skill 91

Python Control Script . 91

Building the Alexa Skill . 92

Summary . 94

00_FM.indd 8 2/1/19 1:36 PM

Contents ix

 5 Home Automation Operating Systems . 95
Computer Operating Systems . 95

Home Automation Operating Systems . 96

Open-Source HA OS Solutions . 97

Proprietary and Closed-Source Hardware/Software 100

Installing the Home Assistant HA OS . 101

Modifying the Home Assistant Using the Configurator 103

Configuring Integrations . 106

Automating the Home Assistant . 107

Internal HA OS States . 108

HA OS Services . 108

Automation Example . 109

Modifications to the Automation Example . 110

Setting Up Presence Detection . 111

Summary . 112

 6 Z-Wave and Home Automation 115
Z-Wave Fundamentals . 115

Z-Wave Network Basics . 116

Network Devices . 118

The Z-Wave Microcontroller . 120

Z-Wave Demonstration . 121

RasPi and the Z-Wave Interface . 122

SSH Login . 123

Project Things by Mozilla.org . 125

Software Installation . 125

Add Things . 127

Test Run . 127

Summary . 128

 7 Mycroft and Picroft . 129
Mycroft Structure . 130

Mycroft Hardware . 131

Picroft . 133

Picroft Installation . 133

Configuring Mycroft . 134

Mycroft GPIO Skill . 136

GPIO Test Circuit . 137

Test Run . 137

Mycroft Skills . 138

Philips Hue Skill . 138

Summary . 141

 8 Fuzzy Logic and Home Automation 143
A Simple HVAC FL System . 143

Basic FL Concepts . 144

FL Implementation Procedure . 145

Python Script for a Simple HVAC System . 150

00_FM.indd 9 2/1/19 1:36 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

x Contents

Generating the Expert System Rules . 151

Fuzzification . 151

Inference . 152

Aggregation . 153

Defuzzification . 153

Simple HVAC System Python Script . 153

Testing the Simple HVAC System Script . 155

LED Mode Indicators . 156

Test Run for the Mode Indicator LEDs . 159

Complex HVAC System Demonstration . 160

Humidity Control . 161

Augmented Simple HVAC System . 162

Complex HVAC System Python Script . 164

Test Run for the Complex HVAC System Script . 167

Summary . 168

 9 Sensors . 169
Temperature and Humidity Sensors . 169

DHT11 . 170

TMP36 . 173

Passive Infrared Sensor . 182

Ultrasonic Sensor . 184

Summary . 188

 10 HA Security Systems . 189
Risk . 189

PIR Security System . 191

Security System Requirements . 191

Software Generation and Installation . 199

Integrating All the Software . 207

Extensions and Modifications . 209

Summary . 210

 11 Integrated Home Automation Systems . 211
Adapters . 211

One-Stop Control . 212

Shared Sensors and Actuators . 213

Script Automation . 214

Additional Subsystems That May Be Automated . 215

AI and HA . 215

 Index . 217

00_FM.indd 10 2/1/19 1:36 PM

Preface

xi

THIS BOOK IS ALL ABOUT HOW YOU, as a maker,

can help automate your home or business

to both improve the quality of your life and

coincidentally achieve some efficiencies. The

latter may be actual energy savings or may be

simply improving the everyday flow of personal

activities. I also included using the Raspberry Pi

as a principal controller in most of this book’s

projects because it so inexpensive yet provides

amazing capabilities and functionalities when

implementing home automation (HA) solutions.

I have written about HA projects in several of

my earlier maker books, which also included the

Raspberry Pi as the main controller. However, in

this book, I have included some rather extensive

discussions regarding personal voice assistants

and their role in HA projects. This type of device

is fairly new to the marketplace and includes the

rather well-known Amazon Echo and Google

Home devices. The inclusion of these devices

in this book was predicated on my realization

that they are rapidly becoming the consumer’s

favorite choice when interacting with HA

systems. The days of turning a thermostat dial

or flipping a light switch are rapidly declining

given the ubiquitous nature of these new voice-

activation devices.

The first few chapters of this book are devoted

to exploring how various voice-activation

devices function with the Raspberry Pi. There

are significant differences between how Amazon

Echo devices interact with the Raspberry Pi

and how Google Home devices interact. I try to

explain how you can successfully interface with

both device types, while at the same time I point

out the pros and cons of the two approaches. I

am confident that if you successfully follow my

multiple demonstrations, you will become quite

adept at interfacing with either device class.

Chapter 5, which follows all the material on

voice-activation devices, concerns HA operating

systems, which are an extremely useful adjunct in

the implementation of a workable HA system. I

provide a good survey of all the major, currently

available HA operating systems (OSs), but such

surveys are highly volatile, and there will likely

be significant changes by the time this book is

published. Nonetheless, the fundamentals of a

good HA OS are unchanging, and, hopefully,

my discussion in this area will provide you

with some good guidance regarding the

selection of an appropriate OS that meets your

requirements. Chapter 5 also includes a working

demonstration of one of the most popular HA

OSs, which should help you really understand

how this software functions and let you make a

good decision on whether or not to pursue this

option as an HA solution.

Chapter 6 describes a Z-Wave-enabled HA

system. Z-Wave is a very popular way to create

communications links among separate or

distributed HA components. There are quite a

few Z-Wave-compliant device manufacturers

in business offering many different and varied

00_FM.indd 11 2/1/19 1:36 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

xii Preface

in great detail how to use a multistep procedure

to design a workable FL system. The good news

is that no additional or expensive components

are required for a Raspberry Pi–powered HVAC

FL controller. The only requirement is to create

and load the FL code into the Raspberry Pi.

There is an actual FL demonstration that

simulates how a real HVAC system would

function. I use light-emitting diodes (LEDs)

to indicate when appropriate heating and/or

cooling commands are generated.

Chapter 9 is a kind of a catch-all where

I cover how to use a variety of sensors seen

commonly in several different HA systems,

including HVAC and security-type systems. This

chapter provides reasonable insights into what

to consider when selecting a sensor and how

to design appropriate interfaces between the

sensors and the controller (which, of course, in

this chapter is a Raspberry Pi).

Chapter 10 describes an HA security system

that employs a remotely located sensor from the

Raspberry Pi main controller. I use a very nice

wireless data link system named XBee, which

provides the capability of sending not only

a binary on/off signal but also actual sensor

data values, if needed. The XBee subsystem is

controlled by an Arduino Uno microcontroller,

which provides me with an opportunity to

introduce the coprocessor concept into our

discussion of HA system design. Sometimes a

Raspberry Pi cannot “do it all” and needs some

assistance. Timing is a very important feature for

any communications link. However, the Linux

OS running on a Raspberry Pi is asynchronous,

meaning that there is no guarantee that the

computer will be available to process incoming

communications data. Meanwhile, the Uno does

provide the immediate and continuous attention

required by the communications link.

Z-Wave-enabled components. I feel that it is

important for you to be aware of this particular

communications protocol because of its

impressive popularity and many readily available

devices and components. I also provide a chapter

demonstration in which I interface a Raspberry

Pi directly into a Z-Wave system. This allows you

to create your own custom control scripts for

many different Z-Wave devices.

An open-source alternative to the Amazon

Echo and Google Home devices is the topic of

Chapter 7. The open-source device I discuss is

named Picroft, and it is a Raspberry Pi–hosted

variant on a parent device named Mycroft.

Basically, Mycroft and Picroft are synonymous:

Mycroft is an actual open-source device, which

can be purchased, and Picroft is the software

image loaded onto a Raspberry Pi. In reality, the

Mycroft device contains a Raspberry Pi running

precisely the same software as that contained in

the Picroft image. Given this fact, I constantly

interchange the names Mycroft and Picroft in

the chapter without a loss of understanding

or context. My purpose in discussing Mycroft

is to present you with a lower-cost option to

the Amazon and Google devices. However, the

cost difference is really quite marginal when

considering that you will need both an external

USB microphone and speaker/amplifier to

make up a working Picroft system. If you add

all these extra costs to the cost of a Raspberry

Pi, you will likely pay about the same as you

would if you purchased an Amazon Echo Dot

or a Google Home Mini. However, if the maker

in you is up to the task, it is always fun to build

your very own open-source voice assistant.

A trip into the artificial intelligence (AI) realm

is the subject of Chapter 8. There I cover the

principles that govern how AI fuzzy logic (FL)

may be applied to a home heating, ventilation,

and air-conditioning (HVAC) system. I discuss

00_FM.indd 12 2/1/19 1:36 PM

Preface xiii

scripts or macros executed on an HA controller

can significantly improve the overall HA user

experience.

Donald Norris

Chapter 11 is a brief one in which I discuss

some important ideas on how to integrate

separate HA systems so that the user has a

“unified” view of an overall HA system and how

to provide one-stop control. I also discuss how

00_FM.indd 13 2/1/19 1:36 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

00_FM.indd 6 2/1/19 1:36 PM

This page intentionally left blank

C H A P T E R 1

Designing and Building
Home Automation Projects

1

I LIKE TO THINK OF THIS CHAPTER as providing the

prerequisite knowledge to allow you to build

home automation (HA) projects as detailed

in this book and other sources. It also seems

that learning about the “big picture” is always

a useful approach before digging into specifics

and fine-grain details. The next section details

a generalized approach to designing and

implementing an HA solution.

I will include a Parts List at the beginning of

each chapter so that readers can identify what

parts will be required to duplicate the projects

and/or demonstrations presented in that chapter.

The Parts Lists also provide suggested sources

that are current at the time of this writing.

Actual parts that are needed will depend on what

each reader already has in his or her parts bin.

This first list also includes parts and components

that are common to other Parts Lists, such as

power supplies and HDMI cables. I will not

include these common items in later Parts Lists

because they are self-evident.

Parts List

Item Model Quantity Source

Raspberry Pi 3 Model B 1 mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

T-Cobbler 40-pin P/N 2029 1 adafruit.com

Solderless breadboard with 830 tie points Commodity 1 mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

5-volt (V), 2.5-ampere (A) power supply
with micro USB connector

Commodity 1 mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

HDMI-to-HDMI cable, 1 meter (m) Commodity 1 amazon.com

(continued on next page)

01_Ch01.indd 1 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

2 Home Automation with Raspberry Pi

develop appropriate HA solutions to meet your

individual needs in an HA system.

The architecture of an HA solution depends

very much on the device types to be controlled

and their locations within the home. For

instance, controlling a thermostat is a very

different process from activating a light.

Different control technologies are involved in

each case, which employ different means of

interfacing with a particular technology. I will

also be using a Raspberry Pi as the standard

microcontroller for all the HA projects in this

book, which will help to minimize any confusion

regarding interfacing or data-communication

issues. However, I will be using several different

control technologies because some HA devices

are widely separated, which typically requires

a wireless control technology, whereas other

devices are close to the controller, which might

best be served by using a direct-wired approach.

In a few select cases, I will use wired control lines

Generalized HA
Design Approach
The first step in any HA project, except for the

most trivial one, is to define the requirements.

This means that definite and detailed project

requirements should be written in a clear and

nonambiguous manner. For example, simply

stating “to turn on the lights” would be incorrect

because there is no mention of what specific

lights are to be turned on or activated, how they

are to be activated, or how long they should

stay on. A better version for the requirements

statement might be “to turn on the front porch

lights for one minute by voice activation.”

In this case, a specific light is identified as

well as an operational time and an activation

mode. Each of the phrases in the requirement

statement will naturally lead to specific HA

implementations. Creating definitive, clear,

and precise requirements should help you to

Item Model Quantity Source

LEDs, various colors Commodity Varies mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

330-ohm (Ω), ¼-watt (W) resistor Commodity Varies mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

2N3904 NPN transistor Commodity Varies mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

Jumper wire package Commodity 1 adafruit.com

USB keyboard Amazon Basic 1 amazon.com

USB mouse Amazon Basic 1 amazon.com

HDMI monitor Commodity 1 amazon.com

Google AIY Voice Kit for Raspberry Pi 3602 1 adafruit.com

01_Ch01.indd 2 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 3

Raspberry Pi Setup
You will need to set up a Raspberry Pi (RasPi)

in order to duplicate this book’s projects. I will

show you how to set up a RasPi 3 Model B as

a workstation that will host the applications

required to implement a variety of HA solutions.

Figure 1-1 shows the RasPi 3 Model B used in

this book.

I should mention that a Raspberry Pi 3

Model B+ was just introduced by the Raspberry

Foundation at the time of this writing. It is

essentially the same as the Model B except

for a slight speed improvement and some

improvements in the wireless functions, none

of which will have any impact on this book’s

projects. You can use either the B or B+ models

without any software or hardware modifications.

I will not go into much detail about what

makes up a RasPi single-board computer

because that has already been adequately

covered by many readily available books. I refer

you to two of my earlier books, Raspberry

Pi Projects for the Evil Genius and Raspberry

Pi Electronics Projects for the Evil Genius,

where I discuss in detail the architecture and

makeup of the RasPi series of single-board

computers. In this book, I use a RasPi 3 Model

B in a workstation configuration, which is

simply having the RasPi connected with a USB

for dispersed devices but only use two wires for

the control data signals.

One very important design feature that you

always must keep in mind when designing an

HA system is safety. Any controlled device that

uses a mains supply should always be controlled

with a certified device that is appropriate to the

country where it is being used. In the United

States, this means that the mains control device

should have Underwriters Laboratories (UL)

approval. There are similar rating agencies in

other countries where HA projects are designed

and implemented. Using certified control devices

will raise the cost of a project, but there is truly

no other option when it comes to ensuring the

safety and well-being of you and your family.

None of this book’s projects involve controlling

mains-connected devices other than with UL-

approved products.

Another important HA design feature that

must be addressed is how the user will interact

with the system. I mentioned voice activation

in the earlier example because this approach

seems to be the most popular at present. HA

systems implemented just a few years ago relied

on keypads and relatively simple liquid-crystal

display (LCD)/ light emitting diode (LED)

electronics to signal user interaction. Of course,

most true home-brew HA systems used and still

do use a traditional workstation coupled with a

monitor, keyboard, and mouse. I will be using

both the workstation and voice-recognition

approaches in this book. Using a workstation is

very advantageous when it comes to designing

and developing specific HA solutions. The

voice-recognition unit, or assistant, can then

be integrated into the system once the initial

design has been proven to work as expected.

I will explain how the Google Voice Assistant

functions a bit later in this chapter, but first

I need to explain how to set up a Raspberry

Pi such that it can function as an HA system

controller.
 Raspberry Pi 3 Model B.Figure 1-1

01_Ch01.indd 3 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

4 Home Automation with Raspberry Pi

is a collection of files and subdirectories that

can be downloaded either using the BitTorrent

application or simply as a raw Zip file. The

BitTorrent and Zip downloads are approximately

1.2 gigabytes (GB) in size. The extracted image

is 1.36 GB in size, but the final installed size is

over 4 GB. This means that you will need to use

at least an 8-GB micro SD card to hold the final

image. However, I strongly recommend that you

use at least a Class 10 card to maximize the data

throughput with the operating RasPi.

The second image version available is named

Raspbian, which is a Debian Linux distribution

especially created for the RasPi. The currently

available image is named Stretch. This version

is also updated quite frequently, but I will show

you how to ensure that you have the most up-

to-date version in the configuration section. The

Raspbian version may be downloaded using

BitTorrent or as a Zip file with final image sizes

similar to the NOOBS image.

A micro SD card must be loaded with the

desired image after that image is downloaded.

There are two ways to accomplish this task

depending on the version downloaded. I discuss

these ways in the following sections.

Writing the NOOBS Image
to a Micro SD Card

The easiest way to create a bootable micro SD

card is to use the downloaded and extracted

NOOBS image. In this case, you will first need to

format the micro SD card using an appropriate

application compatible with your host computer.

For Windows and Mac machines, use the

following link to get the formatter program:

www.sdcard.org/downloads/formatter_4/.

I used the Mac version without any problems.

However, it is imperative that your micro SD

card is properly formatted or else the NOOBS

installation will not work.

keyboard, USB mouse, and HDMI monitor. The

RasPi is powered by a 2.5-A, 5-V supply with a

micro USB connector, as indicated in the Parts

List. Now I will discuss how to set up secondary

storage for a RasPi because this is critical to its

operation.

A RasPi does not require a disk drive for

storing and retrieving software applications and

utilities, which includes an operating system

(OS). The recent designs, within the last few

years, all rely on using a pluggable micro SD

card to serve this secondary storage function.

It is also possible to connect a traditional disk

drive to a RasPi, but it will only serve as an

auxiliary storage device and not as the primary,

persistent storage for the OS and boot partition.

Next, I will show you how to download and

install an OS on a micro SD card such that your

RasPi can be booted to serve as a functional HA

microcontroller.

The simplest way to obtain a programmed

micro SD card is to purchase one from one

of the RasPi suppliers listed in the Parts List.

These cards are ready to go and only need to be

configured to match your particular workstation

configuration, which includes your private WiFi

network. I will discuss the configuration process

in a later section, but first I want to show you

how to create your own micro SD card in case

you do not have the means or desire to buy a

preprogrammed card.

The software to be loaded is known as an

image and is freely available from several online

websites, with the recommended one being the

Raspberry Pi Foundation site at raspberrypi.org.

You will need to download the latest image

from the Downloads section of the website.

Two versions of the disk image are available.

The first version is named NOOBS, which is

short for “New Out Of the Box Software.” The

current NOOBS version available at the time

of this writing is v2.7. This image, in reality,

01_Ch01.indd 4 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 5

the Win32DiskImager available from https://

sourceforge.net/projects/win32diskimager/files/

latest/download.

The download is a Zip file, which will need

to be extracted prior to use. All you need to

do is run the application and select where the

disk image is located, as well as the appropriate

micro SD card logical file letter. Figure 1-3

shows my configuration screen for writing the

Raspbian Stretch version to a micro SD card on

a Windows machine.

The downloaded NOOBS file is named

NOOBS_v2_7_0.zip, and when it is fully

extracted, it is in a folder named NOOBS_

v2_7_0. You must go into the folder and copy

all the files and subdirectories in that folder, as

shown in Figure 1-2.

All the folder contents must be pasted into the

formatted micro SD card.

IMPORTANT: Do not simply copy the NOOBS_v2_7_0
folder itself. You must copy the folder contents onto the
SD card or the card will not be bootable by the RasPi.

Writing the Raspbian Image
to a Micro SD Card

Creating a Raspbian image is slightly different

from the NOOBS process. In this case, you do

not have to format the micro SD card prior to

writing the image. That part of the process is

automatically done for you by the application

that writes the image to the card. You will

need to set up an appropriate application

based on your host computer. For a Windows

machine, I highly recommend that you use

 Contents of NOOBS_v2_7_0 folder.Figure 1-2

 Win32DiskImager screenshot.Figure 1-3

01_Ch01.indd 5 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

6 Home Automation with Raspberry Pi

versions, which leads me to believe that the

Raspberry Pi Foundation folks have decided that

the traditional Raspbian Debian distribution

is their OS of choice. In any case, simply press

the Enter key to fill in the checkbox next to the

Raspbian selection. Next, you must press the “i”

key to start the actual installation. Figure 1-6

shows the screen for the ongoing installation.

The whole installation process takes a while,

depending mainly on the data throughput speed

I recommend using the Etcher program if

you are using a Mac to load the disk image.

It is available from https://etcher.io/. This

application functions in a very similar fashion to

the Win32DiskImager program. Figure 1-4 is a

screen shot of it being run on my MacBook Pro.

The next step in the setup process is to

configure the image, once you have loaded it

onto your micro SD card. The next two sections

detail how to configure the NOOBS image first

followed by the Raspbian image.

Configuring the NOOBS Image

The first step in configuring the NOOBS image

is to set up a RasPi as a workstation. Do not

attach the micro USB power supply to the RasPi

before inserting the micro SD card holding the

NOOBS file into the RasPi card holder. Ensure

that the card is inserted upside-down, meaning

that the printed side of the card is facing down.

You ordinarily could not incorrectly insert the

card unless you attempted to use unreasonable

force, in which case you would likely break the

holding mechanism.

Attach the USB power cable once the micro

SD card is inserted, and you will see the initial

screen, as shown in Figure 1-5.

Only one OS selection is shown in this

particular downloaded image. Multiple OS

selections were shown in earlier NOOBS

 Etcher screenshot.Figure 1-4

 Initial NOOBS power-on screenshot.Figure 1-5

 Raspbian installation screenshot.Figure 1-6

01_Ch01.indd 6 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 7

installation has finished. The OS must now be

configured to your particular requirements, such

as locale and network, using a useful utility

named raspi-config. This utility is provided in the

initial downloaded image. You run the raspi-

config utility by opening a terminal window and

entering the following command (as shown in

Figure 1-8):

sudo raspi-config

Figure 1-9 shows the opening screen after this

utility begins running.

There are nine selections, as you can see

in the figure. Each one contains one or more

configuration settings that you can use to

address your requirements. In this initial

of your micro SD card. This is why I strongly

recommend that you use a Class 10 card to

minimize tasks such as this installation. This

installation took about 20 minutes when I did

it. You should see the installation completion

dialog box (Figure 1-7) after the process has

completed.

The Raspbian OS has not yet been completely

configured, even though the initial Raspbian

 Installation completion dialog box.Figure 1-7

 Starting the raspi-config utili y.Figure 1-8

 The raspi-config initial sc eenshot.Figure 1-9

01_Ch01.indd 7 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

8 Home Automation with Raspberry Pi

■n Camera

■n SSH

■n SPI

■n I2C

■n Serial

■n 1-Wire

You can easily add or subtract interfacing

options at any time by rerunning the raspi-

config utility. In any case, adding an interfacing

option only minimally increases the size of the

overall OS. Also note that enabling an interface

only installs the associated driver(s) for that

particular device. You will still need to install

some additional application software to make

a device fully functional within an HA system.

I will discuss this application software at the

appropriate time when dealing with a specific

HA device.

The remaining step in the configuration

process is to connect the RasPi to your home

WiFi network. This is readily accomplished

by modifying an existing configuration file to

setup, I will be using three of the selections to

configure the key settings for my configuration.

I recommend that you initially duplicate these

settings. However, you should feel comfortable

in changing different settings as you gain

additional expertise with the RasPi.

The first selection I chose was Localization

Options. Figure 1-10 shows the new menu that

appears when you select this option. The menu

selections are straightforward, and they allow

you to customize the RasPi configuration to

suit your own country and keyboard setup. The

keyboard configuration is particularly important

because you will likely become frustrated trying

to accomplish the WiFi configuration without

changing the keyboard layout to match your

country of origin.

The Interfacing Options menu is shown in

Figure 1-11. This menu has eight selections, as

shown in the figure. Which options you enable

will depend on the types of devices you employ

in your RaspPi system. I recommend enabling

the following options to match the projects and

procedures discussed in this book:

 Localization Options menu selections.Figure 1-10

01_Ch01.indd 8 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 9

network={

 ssid="<your wifi name>"
 psk="<your wifi password>"
}

Figure 1-12 shows my modified file with the

WiFi network name (ssid) and placeholder for

the password (psk). Press CTRL-O and then ENTER

connect the RasPi to your network. Open a new

terminal window, and enter the following:

sudonano/etc/wpa_supplicant/wpa_

supplicant.conf

You will then need to enter the following code

snippet into the file following the last line in the

file:

 Modified wpa_supplica t.conf fil .Figure 1-12

 Interfacing Options menu selections.Figure 1-11

01_Ch01.indd 9 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

10 Home Automation with Raspberry Pi

to be connected to the Internet. Check to see

that your home router is set up for DHCP in

case you do not see an IP address similar to the

one shown in the figure. Also recheck that you

entered the correct information into the wpa_

supplicant.conf file. There is no error check for

this edit, and the Raspbian OS will simply not

connect if you have made an error in this edit.

At this point, you have successfully set up and

configured your RasPi system. You next need to

update and upgrade your system to ensure that

the latest Raspbian OS software is installed.

Updating and Upgrading
the Raspbian Distribution

The Raspbian Linux distribution is always being

improved, as mentioned earlier. It is very easy

to ensure that you have the latest updated and

upgraded distribution once you have established

to save the modified file. Then press CTRL-X to

exit the nano editor application.

You need to reboot the RasPi to finish

configuring the WiFi. Enter the following in the

terminal window to reboot the computer:

sudoreboot

I recommend that you enter the following

command into a terminal window to check

whether the RasPi has connected to your home

network:

ifconfig

Figure 1-13 shows the result of entering this

command on my RasPi system.

You should be able to see in the wlan0 section

that a local IP address of 192.168.0.6 was

assigned to the RasPi by the home WiFi router.

This assignment confirms that the RasPi is able

 The ifconfig ommand display.Figure 1-13

01_Ch01.indd 10 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 11

3.3-V level is the absolute maximum voltage

that may be input into a RasPi without causing

permanent damage. The actual voltage range

at which a RasPi can sense an on or 1 signal is

approximately 2.7 to 3.3 V. Similarly, the off or

0 state is approximately 0 to 0.2 V. Any voltage

present on a GPIO input pin will sense a 0 with

a voltage at or less than 0.2 V.

All the RasPi GPIO pins are part of the J8

header, which consists of a double row of 20

pins for a total of 40 pins. These pins and the

associated GPIO designations are shown in

Figure 1-14. This figure will be very useful to

you when you attempt to duplicate this book’s

projects. You should note that a few additional

pins on the header provide 3.3- or 5-V power as

well as multiple ground connections. There are

also two DNC pins, which is short for “Do Not

Connect.” In reality, the DNC designation only

refers to the GPIO function. It turns out that

Internet connectivity. Enter the following

command in a terminal window to update the

installed OS:

sudo apt-get update

The update action changes the internal system’s

package list to match the current online package

list. It does not actually change any of already

installed packages if they are obsolete or

outdated. Those changes are effected by entering

the following command in a terminal window:

sudo apt-get upgrade

The update is reasonably quick if that original

installed distribution is not too old. However,

the upgrade action can take quite some time if a

lot of outdated packages are already installed.

Just remember to always update prior to

upgrading. All the projects in this book were

created using an updated and upgraded Stretch

Raspbian distribution. I have found that failing

to update and upgrade can sometimes lead to

some odd errors and system failures that are

unexpected and puzzling.

You should have a completely functional

RasPi system at this point in the installation and

configuration process. The next section describes

the general-purpose input/output (GPIO)

portion of the RasPi, which is the primary

means through which a RasPi can digitally

control an HA system.

General-Purpose
Input/Output
General-purpose input/output (GPIO) is the

fundamental means by which a RasPi can either

output or input a digital signal. A digital signal

is any bistable signal, which is either on or off.

The on state is typically represented by a

3.3-V level and the off state by a 0-V level. The GPIO header pin layout.Figure 1-14

01_Ch01.indd 11 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

12 Home Automation with Raspberry Pi

GPIO Demonstration
In this demonstration, I will show you how to

control a LED using a single GPIO pin. This

control action is made possible by an application

named wiringPi, which provides a simple utility

to turn on or off a LED directly connected to

a GPIO pin. You will first need to install the

wiringPi software, which is done as follows:

1. Install the git application. In a terminal

window, enter the following:

sudo apt-get install git

NOTE: If you see any errors here, ensure that
you have updated and upgraded the Raspbian
distribution as discussed earlier. However, you may
also discover that the git application has already
been installed by viewing the following line:

git is already the newest version
(1:2.11.0-3+debian2)

2. Download wiringPi using git. Enter the

following in a terminal window:

git clone git://git.drogon.net/
wiringPi

NOTE: Ensure that you enter drogon and not
dragon, a common mistake that I have previously
made.

3. Build and install the wiringPi application.

Enter the following commands in a terminal

window:

cd ~/wiringPi
./build

4. Check and test the wiringPi installation.

Enter the following to check the installation:

gpio -v
gpio readall

Figure 1-15 shows the results of entering the last

set of commands.

these two pins definitely have specific uses as

alternate function pins, which I discuss later.

There are a total of 26 GPIO pins, which

may be configured as either input or output at

any given moment in time. A GPIO pin cannot

simultaneously be both an input and an output.

I have found that 26 GPIO pins are sufficient

for any RasPi project that I have designed or

duplicated. I believe that you will also come to

the same conclusion.

One additional comment is necessary

regarding how the GPIO pins are identified. You

will notice in Figure 1-14 that all the GPIO pins

are designated as “GPIOxx,” where “xx” is a

number ranging from 4 to 27. This identification

is known as the manufacturer’s pin ID or the

BCM mode in Python programming terms,

where BCM is the Broadcom manufacturer’s

abbreviation. Every pin in the figure also has

a Pin No. designation, which is also called the

physical pin number. Various pieces of device

application software, which I mentioned earlier,

sometimes use the physical pin IDs, whereas

others may use the BCM designations. There

is even another suite of application software

named wiringPi, and it has its own unique pin

IDs that are separate from the physical and

BCM designations. This will become a very

important issue in the next section, in which I

provide a GPIO demonstration.

All this pin ID confusion is a natural

consequence of open-source development, where

there are really no enforced standards for such

items as GPIO pin identification. You can rest

assured that I will be quite clear regarding which

GPIO pin ID to use in all my demonstrations

and projects.

01_Ch01.indd 12 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 13

is further discussed below along with some

other supported protocols. The key point to

remember is that alternative pin functions can be

programmatically assigned to various GPIO pins

to suit particular programming requirements. I

recommend that you have both Figures 1-14 and

1-15 available when you are connecting devices

to the GPIO header to help remind you of both

the GPIO and alternate function designations.

There are also two columns in Figure 1-15

labeled “BCM” and “wPi” that are part of the

confusing GPIO pin identification mentioned

earlier. The BCM is the manufacturer’s pin ID,

whereas wPi is the corresponding wiringPi ID.

You must use the wPi pin ID when programming

a wiringPi application. Again, this situation

frequently arises in open-source development,

and you, as a competent developer, must adjust

to the confusion.

The gpio -v command shows that wiringPi

version 2.46 is installed and running. Your

version may be slightly different depending on

when you downloaded and installed the wiringPi

application. What is more interesting is to view

the results of the gpio readall command in

Figure 1-15. The first thing you will probably

notice is that there are different names for some

of the GPIO pins than in the naming shown

in Figure 1-14. This is so because many GPIO

pins have alternate functions in addition to

their default GPIO designations. For example,

physical pins 3 and 5 are designated as GPIO2

and GPIO3 in Figure 1-14, whereas these

same pins are designated as SDA.1 and SCL.1

in Figure 1-15. The designations SDA.1 and

SCL.1 are for “serial data bus 1” and “serial

clock 1,” respectively. These control signals are

associated with the I2C bit-serial protocol which

 Screenshot for the check and test of the wiringPi installation.Figure 1-15

01_Ch01.indd 13 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

14 Home Automation with Raspberry Pi

header. The other end has a labeled plug that fits

into a standard solderless breadboard, as shown

in the figure. I have also included Figure 1-18,

which is photograph of the physical components

that make up the demonstration circuit.

The last three figures were all provided to

clearly show how to set up a RasPi project. Later

book projects may have a schematic, a Fritzing

Demonstration Hardware Setup

Figure 1-16 shows a schematic for controlling a

LED using a single RasPi GPIO pin. The pin

selected was wiringPi ID 0, which is also physical

pin 11 and BCM ID GPIO17.

The series 330-Ω resistor shown in the figure

is used to limit the current supplied by the GPIO

pin. In this case, the current draw would be

approximately 8 mA, assuming that the LED has

a 0.7-V drop across it when forward biased. This

current draw is well within the 15-mA maximum

specification limit for a RasPi GPIO pin. The

LED cathode is also connected to ground to

complete the circuit.

Figure 1-17 is a Fritzing diagram that shows

the main components of the circuit, including a

T-Cobbler, which consists of a flat ribbon cable

with one end terminated with a double-row

header socket that plugs into the RasPi GPIO

Physical Pin # 11
BCM # 17
Wiring Pi # 0 330 Ohm LED

Ground

J8

RasPi 3

 Demonstration circuit schematic.Figure 1-16

 Demonstration circuit Fritzing diagram.Figure 1-17

01_Ch01.indd 14 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 15

{

 digitalWrite (0, HIGH);
 delay(500);
 digitalWrite (0, LOW);
 delay (500);
}

 return 0 ;
}

You can start the nano editor by entering the

following command in a terminal window:

sudonanoblink.c

Enter all the code as shown in the listing, and

press CTRL-O to save the code in a file named

blink.c. You will next need to press CTRL-X to exit

the nano editor.

The code in the blink.c file now needs to

be compiled and linked to form an executable

diagram, and/or a photograph depending on

project complexity.

Next is a detailed discussion of the software

required to enable the demonstration hardware.

Demonstration Software Setup

The wiringPi application requires the use of C

language programs to control the GPIO pins.

The demonstration program is a classic version

of the “Hello World” program, which blinks a

LED once per second. The following program

listing should be input into a file named blink.c

using the nano editor:

#include <wiringPi.h>
int main (void)
{

 wiringPiSetup ();
 pinMode (0, OUTPUT);
 for (;;)

 Actual demonstration circuit.Figure 1-18

01_Ch01.indd 15 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

16 Home Automation with Raspberry Pi

The Make Utility

A handy alternative is available if you don’t

like or desire to use the nano editor and

gcc application to create the test program.

This alternate is the make utility, which will

automatically create an executable program

using a preset script and premade source code.

The script is found in a makefile, which is simply

a bundle of OS-level commands that the make

utility follows to create an executable file. To use

make, you must first change directories from the

home directory to the directory that holds the

example programs in the wiringPi directory. The

terminal command to make this change is

cd ~/wiringPi/examples

Then all you have to do enter these next

commands to create and run the blink program:

make blink
sudo./blink

The LED should start blinking once per

second after these commands are executed. The

blink.c file stored in the Examples directory is

almost identical to the program listing provided

previously in this chapter.

There are other programs in the Examples

directory that control additional LEDs, such as

blink8.c and blink12.c, which blink the first 8

and 12 GPIO pins, respectively. There are also a

series of programs that control various devices

that are not used in this book but could be

explored on your own if you are so interested.

Natural Human Interaction

Natural human interaction (NHI) is the name

given by Google’s AI scientists and researchers

to the new AI field of how computers can

interact with humans in the same way as

application. Enter the following to compile and

link the program:

gcc -Wall -o blink blink.c -lwiringPi

The gcc portion of the command invokes the

Gnu C/C++ compiler and linker application,

which was downloaded as part of the original

OS image. The executable is named blink because

that name immediately follows the -o option.

And finally, the wiringPi library is linked with

the compiled source code by the -lwiringPi

option. The completely compiled and linked

executable is named blink and will be found in

the home directory if you haven’t changed it

from when you ran the preceding command.

Next, enter the following command to run the

program:

sudo./blink

If all went well, you should now observe the

LED blinking once per second. If you do not see

it blinking, then I recommend the following:

■n Recheck the LED circuit, and confirm that

the correct GPIO pin is connected.

■n Recheck the LED orientation. It won’t light

if it is connected in reverse.

■n Confirm that the program has the correct

wiringPi pin ID. The program may have

compiled and linked properly, but if the

pin ID is incorrect, it cannot function as

expected.

The LED will continue to blink indefinitely

because the GPIO control statements are

within a “forever” loop created by the for(;;)

statement. You will need to press CTRL-C to

stop the program and LED from blinking. The

CTRL-C key combination is known as a keyboard

interrupt and is quite useful to stop a program

and/or process that is currently running on a

RasPi.

01_Ch01.indd 16 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 17

HAT Module

The Hardware Attached on Top (HAT)

module is the key component in the voice

kit. It contains all the interface and sensor

processing capabilities that provide for both

speech recognition and audio output. It also

contains some additional features that will

enable you to control some additional external

devices via some RasPi GPIO pins. The HAT

module is based on a recent Raspberry Pi

Foundation standard that specifies how third-

party manufacturers may design daughter

boards that plug into a RasPi GPIO header

humans interact with other humans. Other AI

researchers have named this field the natural

user interface (NUI), but it all relates to simplify

how a human can control a computer system

using only natural behaviors such as speech,

hand motions, hearing, or even having the

computer recognize a facial image. Modern HA

systems must include NHI features in order to

be attractive to potential nontechnical users so

as to be viable and have widespread use. I focus

on speech recognition as well as computerized

auditory response as the appropriate

technologies to use in this book.

Google, in cooperation with the MagPi

magazine publisher, has made available a project

kit that allows makers to experiment with NHI.

This inexpensive kit is named the Google AIY

Voice Kit for the Raspberry Pi, for which I have

provided a source in this chapter’s Parts List.

A comprehensive booklet included with the

kit that describes in detail how to set up both

the physical device and the software required

to operate it. You will also need to download

a complete AIY Voice image in a manner

similar to the procedure described previously.

This image is available from the following link:

https://aiyprojects.withgoogle.com/voice

-assembly-guide-1-get-the-voice-kit-sd-image.

The kit build is very easy, requiring no tools

other than a 00 Phillips head screwdriver.

Figure 1-19 shows the completed kit with a

RasPi 3 already set up inside the cardboard box

enclosure.

The kit has only four electronic components,

which are depicted in the block diagram

in Figure 1-20. I will first explain how the

HAT module, microphone array, and LED/

pushbutton components function before

detailing how to install the RasPi software that

will enable the voice kit itself.

 Google AIY Voice Kit for the
Raspberry Pi.

Figure 1-19

 Google AIY VOICE KIT block diagram.Figure 1-20

Microphone Array

HAT Module

Speaker
Push Button
LED Combination

01_Ch01.indd 17 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

18 Home Automation with Raspberry Pi

on the board because that is provided by the

connected RasPi. Figure 1-21 shows the voice

HAT module.

Six servo connections are also provided on the

HAT module. These connections allow you to

directly control low-voltage devices such as servo

motors using six associated RasPi GPIO pins.

The module’s servo connections are shown in

Figure 1-22.

These connections are printed-circuit board

(PCB) solder pads to which you can easily solder

three-pin headers to allow easily connection of

standard hobby-grade servo motors and other

similar devices. Table 1-1 details how the RasPi

GPIO pins correspond to the voice HAT servo

connections. You should note there is a series

220-Ω resistor connected that acts as a current

limiter for the connected GPIO pin.

to provide extended capabilities. The HAT

standard provides for both physical dimensions

and embedded software interface specifications.

The typical way the embedded software interface

is implemented is through the use of a serial

electrically erasable programmable read-only

memory (EEPROM) chip. The voice HAT

module uses a 4-kB serial EEPROM that can

be accessed by the connected RasPi to provide

it with all the necessary board configuration

parameters required for the voice interface

application. All the power normally required for

the voice HAT module is provided by the GPIO

header power pins. This HAT module does

have a provision to connect an external power

source in case there is a requirement to power

connected devices that require power in excess

of what can be supplied through the header pins.

There is no additional general-purpose memory

 Voice HAT module.Figure 1-21

01_Ch01.indd 18 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 19

subsequent permanent damage to the driver

circuit. The poly fuse is resettable, meaning

that it will start conducting again after cooling

down when subjected to a transient overload

condition.

TABLE 1-1 Voice HAT Servo to RasPi GPIO Pin
Connections

Servo Pin
Number

RasPi Physical
Pin Number

RasPi BCM Pin
Number

0 37 26

1 31 6

2 33 13

3 29 5

4 32 12

5 18 24

In addition, there are four sets of driver

connections provided on the HAT board. These

connections are shown in Figure 1-23. They are

labeled “Driver 0” through “Driver 3” and are

similar to the servo connections except that the

RasPi GPIO pins directly control a field-effect

transistor (FET), which, in turn, controls the

current flow to the PCB solder pads shown in

the figure. This configuration will allow for up

to 0.5 A to be supplied, far in excess of what is

available through a normal RasPi GPIO pin.

Figure 1-24 shows the schematic for one driver

channel. Notice in the schematic that each

driver channel has a 500-mA poly fuse in series

with the FET drain to prevent an overload and

 Servo connections.Figure 1-22

 Driver connections.Figure 1-23

 Driver circuit schematic.Figure 1-24

5V

Poly Fuse
500 mA

Driver 0 to 3

1
2
3

R7 to 10
10k Ohms

Q0 to 3
FET DMG3420U

D

G

S

GPIOxx

01_Ch01.indd 19 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

20 Home Automation with Raspberry Pi

Table 1-3 is a compilation of bit-serial

communication interface pins that are available

using PCB pads and a five-pin header located on

the HAT module. The interfaces consist of

■n Serial peripheral interface (SPI)

■n Interintegrated circuit (I2C)

■n Universal asynchronous receiver transmitter

(UART)

TABLE 1-3 Bit-Serial Communication Interface Pin
Connections

Pad
Label

Bit-Serial
Interface

Pin/Pad
Label Remarks

JI3 SPI 5 V —

JI3 SPI 3.3 V —

JI3 SPI GND —

JI3 SPI CE1 Chip enable 1

JI3 SPI CE0 Chip enable 0

JI3 SPI MISO Master in, slave out

JI3 SPI MOSI Master out, slave in

JI3 SPI CLK Clock

JI5 I2C SDA Serial data

JI5 I2C SCL Serial clock

JI5 I2C GND —

JI5 I2C 3.3 V —

JI5 I2C 5 V —

JP2 UART TXD Transmit out

JP3 UART RXD Receive in

These pins can be useful for connecting

additional modules or devices to use with the

HAT, as well as an easy access point for the bit-

serial signals that otherwise would be unavailable

because the HAT mode covers the entire RasPi

GPIO header. These pins are clearly silk-

screened on the HAT and can be seen in Figure

1-25.

Table 1-2 details the connections between the

RasPi GPIO pins and the driver channels.

TABLE 1-2 Voice HAT Driver Channel to RasPi GPIO
Pin Connections

 Driver
Channel
Number

RasPi Physical
Pin Number

RasPi BCM Pin
Number

0 7 4

1 11 17

2 13 27

3 15 22

The question that might naturally arise for

you is when should you use a driver channel.

The answer would be that you use one to

handle any relatively high current load that is

beyond the normal RasPi GPIO current limit

of approximately 20 mA. Such loads might

consist of relay coils, which are often used in HA

projects. The relays themselves then could handle

much heavier currents, including mains voltage

and current, for such things as appliances and

lighting fixtures.

There a few more items on the HAT board,

which I have lumped together in this next brief

discussion. A digital-to-analog converter (DAC)

combined with a class D audio amplifier takes

the converted analog audio stream coming from

the RasPi I2S interface and sends it to a 4-inch

loudspeaker. I can readily attest that the speaker

is quite loud and remarkably clear. Next is a

power supply that can take an external input

from a barrel connector (not supplied with the

kit) and generate a regulated 5-V power source

for both the servo and driver outputs. Use of

this supply is absolutely required if you want

to power servos and/or driver channel devices.

The organic RasPi power supplied through the

GPIO pins is not capable of meeting the heavy

current demands, and you will most likely cause

permanent damage to the RasPi if you attempt

to operate in such a fashion.

01_Ch01.indd 20 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 21

microphone can be selectively enabled depending

on whether or not a solder bridge (JP1, JP2) is in

place. The default configuration is to have both

microphones enabled.

Pushbutton-LED Combination

There is also a relatively large pushbutton-LED

combination device, as shown in Figure 1-28.

The purpose of this device is to activate the

RasPi/HAT system to begin recognizing a user’s

voice and to light a LED to provide feedback to

the user that the system is enabled. The button’s

Microphone Array Module

The voice kit employs a dual microphone array

to sense and send digitized user voice messages

to the RasPi. The digitized signals are in the I2S

Bit-Serial Protocol, which is the same protocol

used to send digital announcements to the DAC-

amplifier combination. Figure 1-26 shows the

microphone array, in which you can clearly see

the digital microphones located at each end of

the slender PCB module.

Each microphone is a Knowles MEMS

unit, Model SPH0645LM4H. An uncased

microphone is shown in Figure 1-27 alongside a

block diagram for the unit.

Any incoming sound wave will be converted

from its analog form to an equivalent digital

data stream by the microphone unit using

the I2S Bit-Serial Protocol, with the data

subsequently sent over to the RasPi. Each

 Voice HAT bit-serial communication interface pads and pins.Figure 1-25

 Dual microphone array.Figure 1-26

VDD

CLK

LR

DOUT

GND

 Knowles digital microphone.Figure 1-27

01_Ch01.indd 21 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

22 Home Automation with Raspberry Pi

implement both voice-recognition and speech-

generation functions. These steps should be

accomplished using the RasPi’s Web browser.

Create a Google Account

The very first action you must take is to create a

Google account. I am pretty sure that most of

my readers already have a Google account, but

if you don’t, just go to https://accounts.google

.com/signup. This is a very simple action, but it

is absolutely required before proceeding to the

next step.

Log into the Google Cloud

The next step is to log into the Google cloud

(GC) website with your Google account user

name and password. Normally, your regular

email account name is the user name, and

whatever you set for your Google account

password is the same for the cloud login.

The GC login link is https://console.cloud

.google.com.

Create a Google Cloud Project

You will need to create a Google cloud project

(GCP) in order to continue with the project. Just

click on the GCP icon in the upper left-hand

corner of the cloud console webpage. Figure

1-29 shows the result of this action. You will

see that I already created a project (as shown in

the figure). Yours will be blank when you first

open it. Click on the + icon to open the dialog to

name your project. I suggest naming the project

Voice Assistant, just as I did in the figure.

Enable the Google Assistant API

Click on the triple-bar icon in the upper left-

hand corner of the GCP menu bar, and then

click on the Library selection from the drop-

digital signal is connected to GPIO physical pin

16 (BCM #23), and the LED is connected to

GPIO physical pin 22 (BCM #25).

Google Voice Assistant
Software Installation
This section discusses in detail the key steps

involved in the installation of the Google Voice

Assistant software. Step-by-step instructions

are also provided in the instruction pamphlet

included with the Google Voice Kit. The

instructions included in this section presume

that you already have downloaded and created

a micro SD card from the AIY Voice image

mentioned earlier. This image contains several

Python script directories, which allow the

RasPi to connect with the Google server and

 Pushbutton-LED combination.Figure 1-28

01_Ch01.indd 22 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 23

vulnerable to being hacked, which is why there

is strong security built into this Web application.

This security is implemented using OAuth 2.0

authentication on both the client and the server.

OAuth 2.0 is a token-based authentication

sequence. It is implemented in a process clearly

shown in Figure 1-30, which is a data-sequence

flow diagram showing both the client and server

as they request/respond to each other in creating

a secure link.

You will need to create an OAuth 2.0 client

by first clicking on APIs & Services on the cloud

console screen. Then select Credentials, and

click on Create Credentials when the Credentials

screen appears. You will first need to configure

your consent by clicking on the Configure

consent screen. Choose an appropriate product

name, and then click Save. I recommend the

name Voice Assistant.

down menu. Then enter “Google Assistant API”

into the search text box. Next, click the Enable

icon to include the Google Assistant API in

your project.

The Google Assistant API uses the gRPC

framework to implement the Voice Assistant

functions between the Python client, which

is stored on the RasPi, and the Google server

software, which is located at a remote Google

data service center. I have included a sidebar,

“Google Remote Procedure Call,” that delves

into the gRPC framework to further expand

your knowledge regarding this important

technology.

Obtain Credentials

Security should always be a consideration in

any computer project, especially ones that

use the Web. This Voice Assistant project is

 New GCP dialog screen.Figure 1-29

01_Ch01.indd 23 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

24 Home Automation with Raspberry Pi

Google Remote Procedure Call
gRPC is an abbreviation for “Google Remote Procedure Call,” where a client application can directly call methods
on a remote machine as if it were a local object. This design helps you to easily build distributed applications
and services. The gRPC framework defines wh t services are available, how to request those services, and
finall , how to deal with the returned objects. The server side is responsible for implementing the entire
interface and properly handling all client calls. The client side, which is the RasPi in our case, contains a stub
that mirrors the same exact methods that are implemented on the server side. The gRPC is set up to handle a
variety of languages. Python was chosen to be the language used for the client-side implementation for the
Voice Assistant. I am not sure what language the Google server side uses, but I suspect that it likely is C/C++ for
efficie y.

Data streams are exchanged between the client and server using protocol buffers. This is an open-source
implementation where the serial data to be exchanged are set up in a PROTO fil , which is a text file th t uses
a .proto extension. The protocol-buffered data are structured as messages, where each message is a record
containing name/value pairs. These pairs are also called field . The following is a simple record example:

message Person {
 string name = 1;
 int32 id = 2;
 bool has_auth = 3;
}

A buffer protocol compiler is used once all the data structures have been define . The compiler will generate
appropriate language-specific classes f om the PROTO definition . In addition, unique accessor methods will be
created for each of the mutable variables. Methods are also provided that will serialize and parse the raw data
bytes to language-appropriate objects.

gRPC services are defined in P OTO files with RPC pa ameters and return types specified in a cordance with
protocol buffer messages. The following is an example of a service definition

// The greetings service definition
service GreetingService {
 // Define a RPC operation
 rpc greeting(HelloRequest) returns(HelloReply);
}

// The request message has the payload; user’s name
message HelloRequest {
 string name = 1;
}

// The response message containing the greetings
message HelloReply {
 string message = 1;
}

There have been several revisions to the protocol buffer, with the latest being proto3, which I believe
is used with gRPC. The latest documentation for gRPC protocol buffers is available from https://
developers.google.com/protocol-buffers/docs/reference/overview.

01_Ch01.indd 24 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 25

Click on the Create button. The program will

briefly pause while the client ID and client secret

are both generated. Figure 1-31 shows a sample

screen shot of a client id and client secret.

Don’t worry about copying the obscure data,

they will be automatically sent at the appropriate

time according to the sequence diagram I

presented earlier.

Download and Rename Credentials

You will need the new credentials to be stored

in a local RasPi file. Select the Voice Recognizer

credential shown on the Credentials screen. Then

click on the Download JSON icon, as shown in

Figure 1-32. This action will download a JSON

file containing both the client ID and client

secret to a file in your Downloads directory. The

default file name is very complex, with many

Next, you need to name your newly created

credential. Go back to the Credentials screen,

and click on the Create Credentials button.

Select OAuth client ID from the drop-down

menu. Click on the radio button “Other” for

the application type. Enter a name in the textbox

that pops up. I suggest using the name Voice

Recognizer, which fits the intended application.

 OAuth 2.0 data-sequence fl w
diagram.

Figure 1-30

 Client ID and client secret.Figure 1-31

 Download credentials screenshot.Figure 1-32

01_Ch01.indd 25 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

26 Home Automation with Raspberry Pi

enabling the Google Voice & Audio Activity

control for your account. By doing so, you will

be enabling your account to

■n Learn the sound of your voice

■n Learn how you say words and phrases

■n Recognize when you say “OK Google”

■n Improve speech recognition across Google

products that use your voice

Google saves your voice recordings and other

audio present when you activate the control by

saying “OK Google.” Activation also can be

initiated by pressing a pushbutton if the system

is so designed with such a device. The voice kit

uses the pushbutton approach to activate voice

recordings.

Go to the following link to activate the Voice

& Audio Activity control: https://myaccount

.google.com/activitycontrols/audio. Enable the

activity by clicking on the slider shown in

Figure 1-33.

numbers and letters. You will need to rename it

to make it practical to access. To do this, open

a terminal window and enter the following

commands:

cdDownloads

ls

mv client_secret

Now press the TAB key, which will

automatically fill in the rest of the download

file’s letters and numbers. Append the following

to the command you are building in the terminal

window:

/home/pi/assistant.json

Now press the ENTER key, and you will have

a new JSON file named assistant.json in

the home directory, which is required for the

following steps.

Activity Controls

Activity controls add functionality to your

Google account. In this case, you will be

 Enabling the Voice & Audio Activity control.Figure 1-33

01_Ch01.indd 26 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 27

“What time is it?” The voice kit clearly and

loudly responded with the local time. You

should try out a bunch of different commands

to see how Google responds. Enter the CTRL-C

key combination to stop the program. Figure

1-34 shows the terminal window log of how the

system responds to parsing the voice command.

The following is the program listing for the

demonstration Python program. I have included

it here to illustrate how relatively simple it is

to implement voice recognition and speech

output using Google’s client/server approach.

This listing will also be used for some simple

modifications that will be discussed in the next

section.

Note that voice inputs cannot be saved if the

Voice & Audio Activity control is turned off,

even if you are signed into your Google account.

Testing the Voice Kit

You are now ready to test the voice, provided

that you have completed all the previous steps.

Enter the following commands in a terminal

window to start the voice kit test:

cd AIY-voice-kit-python
src/examples/voice/assistant_grpc_demo.py

Next, press the large pushbutton, which

should start glowing green. Then clearly speak

your voice command. My first command was

 Terminal window log for a voice command.Figure 1-34

#!/usr/bin/env python3
Copyright 2017 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software

01_Ch01.indd 27 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

28 Home Automation with Raspberry Pi

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either expressed or
implied.
See the License for the specific language governing permissions and
limitations under the License.

"""A demo of the Google Assistant GRPC recognizer."""
import logging
import aiy.assistant.grpc
import aiy.audio
import aiy.voicehat
logging.basicConfig(
 level=logging.INFO,
 format="[%(asctime)s] %(levelname)s:%(name)s:%(message)s"
)

def main():
 status_ui = aiy.voicehat.get_status_ui()
 status_ui.status('starting')
 assistant = aiy.assistant.grpc.get_assistant()
 button = aiy.voicehat.get_button()
 with aiy.audio.get_recorder():
 while True:
status_ui.status('ready')

 print('Press the button and speak')
button.wait_for_press()

 status_ui.status('listening')
 print('Listening...')
 text, audio = assistant.recognize()
 if text:
 if text == 'goodbye':
 status_ui.status('stopping')
 print('Bye!')
break

 print('You said "', text, '"')
ifaudio:

aiy.audio.play_audio(audio)

if __name__ == '__main__':
 main()

Extending the Voice Kit
Functionality
This section shows you how to increase the

voice kit functions using a modification to

the demonstration program previously listed.

The first thing you should do is to create a

copy of the original program, on which any

modifications will be applied. This action

ensures that an unmodified program listing

is preserved so that you can always restore

the original program functions. Always make

modifications to the copy, never to the original.

Enter the following commands in a terminal

window to make the first program copy:

01_Ch01.indd 28 2/1/19 1:40 PM

Chapter 1 n Designing and Building Home Automation Projects 29

to them. It is very easy to get lost in program

modifications without careful attention to what

changes have been made to what programs.

This program modification will be to turn

off the RasPi by using the voice command

“Power down.” Use the nano editor to insert the

following additional code, which is in bold text,

as shown in the listing:

cd~

cd AIY-voice-kit-python/src/examples/voice
cp assistant_grpc_demo.py demo1.py
sudo nano demo1.py

Note that I used demoN.py as the copy name,

where N starts at 1 and progresses in a sequence.

You should also make a list of the demoN.py

names and what modifications have been done

"""A demo of the Google Assistant GRPC recognizer."""
import logging
import aiy.assistant.grpc
import aiy.audio
import aiy.voicehat
importsubprocess

logging.basicConfig(
 level=logging.INFO,
 format="[%(asctime)s] %(levelname)s:%(name)s:%(message)s"
)

defshutit():

subprocess.call('sudoshutdownnow',shell=True)

def main():
 status_ui = aiy.voicehat.get_status_ui()
 status_ui.status('starting')
 assistant = aiy.assistant.grpc.get_assistant()
 button = aiy.voicehat.get_button()
 with aiy.audio.get_recorder():
 while True:
status_ui.status('ready')

 print('Press the button and speak')
button.wait_for_press()

 status_ui.status('listening')
 print('Listening...')
 text, audio = assistant.recognize()
 if text:
 if text == 'goodbye':
 status_ui.status('stopping')
 print('Bye!')
break

iftext=='powerdown':

aiy.audio.say('ShuttingDown!')

shutit()

 print('You said "', text, '"')
ifaudio:

aiy.audio.play_audio(audio)

if __name__ == '__main__':
 main()

01_Ch01.indd 29 2/1/19 1:40 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

30 Home Automation with Raspberry Pi

■n Raspbian configuration

■n Updating and upgrading the OS

I next presented a comprehensive discussion

on the general purpose input/output (GPIO)

system. GPIO pins are a very important design

feature that provides a means for the RasPi to

control HA interfaces. I also demonstrated a

simple LED blink program, which used the

wiringPi library for GPIO pin control.

Several sections followed concerning how

to build and program the Google AIY Voice

Kit. This kit was used to demonstrate a voice-

recognition capability using a RasPi. I explained

how each principal kit component worked,

including the Hardware Attached on Top (HAT)

module.

A detailed account of how to set up a Google

developer’s account followed. This account is

necessary to access the Google cloud platform,

which services the voice kit for both voice

recognition and speech output.

The chapter concluded with a demonstration

of how to modify the default voice kit program

such that the RasPi shuts down on recognizing

the voice command “Power down.”

I made the code modifications and entered the

following commands to test the program:

cd~

cd AIY-voice-kit-python
src/examples/voice/demo1.py

I observed that the RasPI did shut down

shortly after I voiced the command “Power

down.” This program modification should

clearly show that it is relatively easy to extend

the RasPi voice interface functions. I will also

demonstrate in some of the following chapters

how to directly control GPIO pins using voice

commands. This feature will be very important

in implementing a variety of HA functions.

Summary
This chapter started with a brief discussion

regarding several HA design approaches. These

included using a natural human interaction

(NHI) function such as voice activation.

The next sections concerned how to set up a

Raspberry Pi (RasPi) as an HA microcontroller.

Topics included

■n Creating an OS disk image on to a micro

SD card

01_Ch01.indd 30 2/1/19 1:40 PM

C H A P T E R 2

Interfacing a Google Home Device
with a Raspberry Pi

31

THIS CHAPTER INCLUDES a detailed discussion

of how Google’s Home device works and

how it interacts with Google’s Web servers to

provide intelligent home-based voice services.

The overall Google service is called Google

Assistant and is also the same service described

in Chapter 1 for the Google Voice Kit. This

chapter also has a comprehensive discussion

of how to connect a RasPi to a Home device

to take advantage of the professional voice-

recognition and speech-generation functions.

This approach is significantly different from the

one taken in Chapter 1, where a Google Voice

Kit was connected to a RasPi to enable fairly

basic voice recognition and speech generation.

That approach required the RasPi to perform

many functions that are done solely within the

Home device. This chapter’s approach is to have

the Home device function more as a coprocessor

than as a RasPi peripheral. This means that

the Home device offloads a substantial amount

of the computational burden from the RasPi,

which, in turn, permits the RasPi to have more

computational assets available to efficiently

perform other system functions.

Google Home Device
It is important to have a detailed discussion

regarding the Google Home device before

delving into how it functions with a RasPi.

Figure 2-1 shows the device, which is self-

contained and connects to the Internet through

a local WiFi link.

Parts List

Item Model Quantity Source

RasPi 3 B or B+ 1 adafruit.com
amazon.com
mcmelectronics.com

Google Home device Home 1 amazon.com

Power Switch Tail II 1 amazon.com

Qiachip 433-megahertz (MHz) transmitter/
receiver, four-channel

— 1 amazon.com

Alternating-current (AC) table lamp Commodity 1 Various

02_Ch02.indd 31 2/1/19 1:42 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

32 Home Automation with Raspberry Pi

■n Power supply: 16.5-V, 2-A wall adapter

■n Ports and connectors: Direct-current (DC)

power jack

■n Supported operating systems: Android

(4.4 and higher) and iOS (9.1 and higher)

Please note that only the WiFi communication

link is enabled in the default Google Home

configuration. The internal communications

module shown as part of the Figure 2-2 block

diagram is capable of supporting Bluetooth and

NFC as well as the default WiFi protocol.

A lot of hardware is contained in the device,

which makes it very user friendly, including a

touch interface, LED displays, and the voice

interface. The top of the device contains a grid

of capacitive pads, which can sense a user’s

finger touch and react appropriately. The top

also has an embedded multicolored 12-LED ring

array, which provides some visual feedback to

the user. Finally, a two-element micro-electro-

mechanical systems (MEMS) microphone array

is mounted on the top surface, which senses the

user’s voice. If you carefully examine Figure

2-1, you can see the two tiny holes for the

microphones. It is very important to keep these

holes clear of any blocking material or you will

degrade or even stop the device from functioning

properly.

This device consumes a fair amount of power,

which may be inferred from the 16.5-V, 2-A

power supply. This suggests that it would be

impractical to consider using this device in a

portable, battery-powered project. The power

consumption is not an important limitation

because the device will likely be used in a static

configuration in the user’s home while constantly

being plugged into the AC mains.

The device uses two microprocessors, one

of which I labeled the “auxiliary processor” in

Figure 2-2, which controls and processes the

user’s interactions. The other microprocessor,

which I labeled the “main processor” in Figure

Some key technical specifications are as

follows:

■n Dimensions: 3.79 inches (96.4 millimeters

[mm]) in diameter by 5.62 inches (142.8 mm)

high

■n Weight: 1.05 pounds (477 grams [g])

■n Colors: White with slate fabric base

(standard); other colors available

■n Supported audio formats: HE-AAC,

LC-AAC, MP3, Vorbis, WAV (LPCM),

Opus, and FLAC (hi-res 24 bits, 96 kilohertz

[kHz])

■n Wireless communications: 802.11b/g/n/ac

(2.4 GHz/5 GHz) WiFi, Bluetooth 4.1, and

Near-Field Communication (NFC)

■n Speakers: 2-inch active driver with dual

2-inch passive radiators

■n Far-field voice recognition

 Google Home device.Figure 2-1

02_Ch02.indd 32 2/1/19 1:42 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 33

running correctly. I am refraining from including

any instructions regarding how to configure

the device because the step-by-step procedures

displayed on the smartphone or tablet are

abundantly clear.

I would strongly suggest that you take

some time to learn how to use the device in a

stand-alone fashion. I believe that you will be

impressed with its inherent capabilities and

functionalities. The more you understand how

to successfully use the device, the easier it will

be for you to understand how to use it with a

RasPi.

Connecting a RasPi to the
Google Home Device
The first thing you must realize is that no

direct physical connection can be easily made

between a Home device and a RasPi. Instead,

a logical connection between the two must be

made using the Cloud. In this way, the Home

device connects with a Web-based server that

2-2 communicates with the Google Assistant

service, processes audio streams, and does

several other related functions. The main

processor has a 256-megabyte (MB) Flash

memory, which will automatically be updated to

the latest version during your initial setup. It also

has 512 MB of RAM, which holds the dynamic

data required to support real-time operations.

The device uses a 2-inch active 4-Ω speaker

along with two 2-inch passive radiators to

produce high-quality audio. It can potentially

generate such a high volume that you will want

to turn it down so that it will not create too

much of a disturbance.

Configuring the Google Home Device

The device must be configured initially using a

smartphone app. You must first load the app

named Google Home either on an Apple (iOS) or

Android smartphone or equivalent tablet device.

Then follow the on-screen instructions to enable

the device. I used the iOS version without any

problems and promptly got the device up and

 Google Home block diagram.Figure 2-2

Capacitive Drivers

LED DriversCapacitive Grid

LED Array

Auto Interface

MEMS Microphone Array

Auxiliary Processor

256 MB
Flash

512 MB
RAM

Bluetooth
Wiÿ
NFC

Main Processor

5V 3.3V

AC Mains

Power Supply

DAC

Audio
Amp

4 Ohm Speaker

02_Ch02.indd 33 2/1/19 1:42 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

34 Home Automation with Raspberry Pi

website in order to create an applet. It is a simple

six-step process to create an applet once you

have registered and created a free account.

Figure 2-3 shows the initial screen to create an

applet. You make this screen appear by clicking

on the My Applets icon shown on the main

IFTTT introductory screen.

Next, click on the “this” word in the

predominant phrase “if +this then that” shown

on the screen. The screen shown in Figure 2-4

will next appear. This screen allows you to select

a Web service that will successfully interface

with the Google Home device. Entering a “G” in

the search text box causes all the available Web

services with names starting with a G to appear.

You will need to click on the Google Assistant

icon to select the required Web service. This is

precisely the same Web service that enabled the

Google Voice Kit to function in the Chapter 1

demonstration. This action completes the first

step in the applet creation process.

The second step is to choose a trigger action

for the applet. I chose “Say a simple phrase” as

the triggering action. You can select this trigger

action by clicking on the appropriate block,

as shown in Figure 2-5, which automatically

appears after completing the first step.

Clicking on the trigger block causes the screen

shown in Figure 2-6 to appear. You need to fill in

the required fields both to request and response

phrases. I chose two very simple and direct

phrases, as you can readily see from the figure.

Click on Create Trigger to generate the trigger

action and to proceed to the next step.

in turn connects with another Web service that

sends commands to yet another Web server

hosted on the RasPi. It turns out that there are

a number of approaches to implementing the

logical connection. I have taken an approach

using software and protocols that are relatively

uncomplicated and easy to use and with which I

was already familiar. I will create a very simple

demonstration project to show you how this all

works in a step-by-step manner. The project will

be to remotely control a single LED connected

to a GPIO pin on the RasPi. The LED will be

turned on by the phrase “OK Google, turn on

the LED” and turned off by the phrase “OK

Google, turn off the LED.”

The first element of the project concerns how

the Home device initiates a Web request that is

eventually sent to the RasPi’s Web server.

ifttt.com

This section’s heading is the URL for the Web

service that enables a Google Home device to

send a Web request to a RasPi-hosted Web

server. The URL name is short for “if this then

that,” which is a phrase that can be traced back

to a fundamental propositional logic principle

called modus ponens, which is a Latin phrase

meaning “mode that affirms by affirming.” This

principle may be summarized by this logical rule:

P implies Q and P are both asserted to be true,
so therefore Q must be true.

The IFTTT website allows you to create an

applet, which is activated by a predefined trigger

action sensed by a Home device. The applet will

then use a Web service to connect with the target

RasPi, which must also be connected to the

Internet. You must first register on the IFTTT

02_Ch02.indd 34 2/1/19 1:42 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 35

 Initial screen for applet creation at ifttt.com.Figure 2-3

 Choose a Service selection screen.Figure 2-4

02_Ch02.indd 35 2/1/19 1:42 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

36 Home Automation with Raspberry Pi

You should now see the phrase “if <<icon for

selected web service>> then +that” appear, as

shown in Figure 2-7. Click on the “that” word

to make the screen that allows you to select the

Web service used to connect with the RasPi.

Figure 2-8 shows the screen for Choose

Action Service that appears, which will allow

you to select the appropriate Web action to be

taken after the trigger action has completed.

Enter “Web” in the search text box, which causes

all the available Web services with names starting

with Web to appear. In this case, only one service

named Webhooks will appear. Click on the

Webhooks icon, as shown in the figure, to select

it. Webhooks is the current name for a Web

service previously known as Maker. Figure 2-9

shows the next screen, which is used to start the

Web request configuration process. Click on the

Make a Web Request box to proceed.

 Choose Trigger screen.Figure 2-5

 Complete Trigger Fields screen.Figure 2-6

02_Ch02.indd 36 2/1/19 1:42 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 37

 Screen to proceed to action selection.Figure 2-7

 Choose Action Service screen.Figure 2-8

02_Ch02.indd 37 2/1/19 1:42 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

38 Home Automation with Raspberry Pi

that you are not using a DynDNS type of

service, as described below.

You should be aware that there is no

guarantee that the external IP address will

remain the same because it is dynamically

assigned by the ISP each time you connect

to your ISP server. This means that you must

either edit the appropriate applet(s) each time

you run the project or subscribe to a service

that provides a constant Web location. The

latter approach is the way I chose to handle

this issue. I subscribe to the DynDNS service,

which provides a URL of my choosing so that

all I need to do is type that into the URL text

box. This DynDNS-managed URL is constantly

updated with my latest ISP-assigned external

IP address, automating the entire connection

process. You can create any URL you desire that

Clicking on the Web Request block causes the

screen shown in Figure 2-10 to appear. You will

first need to fill in the required field for the URL.

This URL field raises the interesting question

on how to make your RasPi Web server available

on the Internet. You probably already realize

that the RasPi connects to your home WiFi

network using a local IP address. In my case, this

was 192.168.1.31. You can easily determine this

address by entering the ifconfig command in a

terminal window. Figure 2-11 shows the result

for my situation.

However, the local IP address is not the

correct one to enter into the URL text box

needed for the applet. You will need your

external IP address, which is automatically

assigned by your Internet service provider (ISP).

You can easily find this by opening a browser on

the RasPi and going to the myip.com website.

Figure 2-12 shows the result of my search on

this website. This is the IP address that must be

entered into the applet URL text box, provided

 Make a Web Request screen.Figure 2-9

 Complete Action Fields screen.Figure 2-10

02_Ch02.indd 38 2/1/19 1:42 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 39

is not already in use, consistent with normal

Internet naming practices. If you examine Figure

2-10, you should see that the URL I entered is

http://mytestsite.org (this is not my true URL

because I chose to alter it for safety and security

purposes). In any case, you need to either

enter your currently assigned numeric external

IP address or your DynDNS website URL as

appropriate.

One further action is required to connect

the RasPi on the local network to the external

world. You need to enable port forwarding for

HTTP packets on your router to the RasPi

hosting the Web server. Figure 2-13 shows this

port forwarding screen for my Netgear router.

Your router will likely have a different screen,

but the end result will be the same. Once in

place, any external HTTP requests received by

 Myip.com screen results.Figure 2-12

 Screen results for ifconfig.Figure 2-11

02_Ch02.indd 39 2/1/19 1:42 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

40 Home Automation with Raspberry Pi

Just click on the Finish button to complete

the applet generation. Once you do that, a

summary screen similar to Figure 2-15 should

appear.

You have the option to click on the Check

Now button to have the applet checked for any

the router will automatically be forwarded to the

designated local IP address.

All that’s left in this step is to click on the

Create Action button to generate the action.

Figure 2-14 shows the final screen in this six-step

applet-creation process.

 Review and Finish screen.Figure 2-14 Summary screen for the newly created
applet.

Figure 2-15

 Port forwarding edit screen.Figure 2-13

02_Ch02.indd 40 2/1/19 1:42 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 41

and perhaps more important, purpose was to

present a framework or template that could be

used to implement a variety of control schemes

extending far beyond the control of a simple

LED circuit.

The following Python script handles Web

requests to either turn the LED on or off. I have

added some explanatory comments both in the

script and following it to help clarify what is

happening in this program.

Using RPi.GPIO and Flask for this script
import RPi.GPIO as GPIO
from flask import Flask

app = Flask(__name__)

This is the default method that is
invoked without an extension
@app.route("/", methods=['GET', 'POST'])
def index():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(12, GPIO.OUT)
 print "Turning the LED on"
 GPIO.output(12, GPIO.HIGH)
 return "LED on"

This method is invoked when an "/off"
extension is detected
@app.route("/off", methods=['GET','POST'])
def off():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(12, GPIO.OUT)
 print "Turning off the LED"
 GPIO.output(12, GPIO.LOW)
 return "LED off"

if __name__ == "__main__":
 app.run(host='0.0.0.0', port=80,
 debug=True)

This Python script is a very simple Web server

that will parse out any Web request and run the

appropriate Python code that is associated with

the request. In this script, there are two Web

request formats. The first one does not have an

errors or omissions. I have never encountered an

error in using this six-step process. You should

also observe that the icons for the desired Web

services are shown in the Summary screen

instead of any actual text identifying those

services. This applet is now part of your My

Applets collection to be found in your account

on the ifttt.com website. Please realize that you

do not have to have the ifttt.com site open for

this applet to be accessed. Your Google account

associated with the Home device has all the links

stored in its memory to access both IFTTT and

Webhooks. Your trigger phrase will start the

process of retrieving all the needed Web links

and send the desired Web request to your RasPi

Web server. The next section discusses the RasPi

Web server and requisite software necessary to

respond to the Web request and carry out the

desired action(s).

RasPi Web Server Software

This section discusses the required software

to process the Web requests received from

the Home device. As stated earlier, a number

of methods are available to accomplish this

task. They range from installing a full-service

Web server such as Apache or nginx to using

a minimal Python script. I chose the latter

because it exposes the fairly simple Web requests

that can be easily handled and minimizes the

computational load on the RasPi. I will say that

if a Web request required storing or retrieving

any data from the Home device, I would have

chosen the full-service Web server approach.

However, this demonstration project is simply

transactional, requiring no data to be sent or

received.

I had two main purposes in mind for

presenting this approach for implementing

a Web server on a RasPi. The first was to

demonstrate a working Python script that

would control the LED as desired. The second,

02_Ch02.indd 41 2/1/19 1:42 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

42 Home Automation with Raspberry Pi

The next statement, GPIO.setup(12,
GPIO.OUT), sets physical pin 12 as an output.

The next print statement causes an output in the

RasPi terminal window to display “Turning the

LED on,” which provides a positive feedback as

to what is happening in the Web server. The next

statement, GPIO.output(12, GPIO.HIGH),

sets pin 12 to a high state, with 3.3 V appearing

on it. The last statement returns “LED on”

and returns the string LED onto the website

originating the request. It will be ignored in the

case of the Webhooks service, but you will see

this response if you connect to the RasPi Web

server using a browser in lieu of the Google

Home device. Remember, the RasPi URL is

freely available on the Internet, and you may

connect to it using any number of compatible

devices, including smartphones, which I

demonstrate later in this chapter.

The off() function definition is almost

identical to the index() function definition

except that it places pin 12 in an off state or 0

V on the pin. This action will turn off the LED,

which is what is expected with the Web request

with the off extension added to the URL.

You will need to enter the Python script

into the RasPi using a text editor. I strongly

recommend using the nano editor to do this.

Enter the following command in a terminal

window to create the Editor Entry window for a

file named LED_test.py:

sudo nano LED_test.py

Now enter the Python script as shown in the

listing, paying attention to proper indentation.

You can alternatively download this file from

this book’s website, www.mhprofessional.com/

NorrisHomeAutomation.

The program can be run in the Home

directory after being entered by executing the

following command:

sudo python LED_test.py

extension or argument and is considered the

default form. This default case in the applet

created in the preceding section is simply the

basic URL. The sample I provided in the applet

is http://mytestsite.org without any extensions.

This Web request’s purpose is to turn on the

LED. The statement @app.route("/",
methods=['GET', 'POST']) detects this

default case and allows the code immediately

following it to run. The code that follows this

statement will be discussed later in this section.

The statement @app.route("/off",
methods=['GET','POST']) detects a URL

with an extension. In this case, the URL with

the extension is http://mytestsite.org/off, which is

a Web request to turn the LED off. Note that I

have not yet shown you how I created an applet

to turn off the LED. This is the Web server side

with the Python code following the URL parsing

statement for actually turning off the LED.

The following Python code snippet turns on

the LED and is worth discussing:

def index():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(12, GPIO.OUT)
 print "Turning the LED on"
 GPIO.output(12, GPIO.HIGH)
 return "LED on"

This is a Python function definition that is

executed when a Web request without an

extension is detected or parsed. The code uses

a Python library called RPi.GPIO that permits

direct access to the RasPi GPIO pins. Recall

that I used the C language to access and

manipulate the GPIO pins in Chapter 1. It is

also possible to do the same in this script, but it

is much easier to simply use Python commands

to directly control a GPIO pin. The statement

GPIO.setmode(GPIO.BOARD) sets up the

software to use the physical pin numbers instead

of the manufacturer’s numbers (BCM mode).

02_Ch02.indd 42 2/1/19 1:42 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 43

Demonstration Circuit

Figure 2-17 is a schematic for the test circuit. It

is very similar to Figure 1-16 with the exception

that a different GPIO pin is used and the

wiringPi library is not used.

Figure 2-18 is a photograph of the physical

setup where you can see that I used a T-Cobbler

to extend the GPIO pins to a solderless

breadboard. No additional physical components

are required for this simple demonstration.

Test Run

You will be ready to test the project once the

two applets are created, the RasPi software is

installed, and the physical circuit is set up. Just

execute the RasPi software as shown previously

and speak to the Home device with this phrase:

"OK Google, turn on the LED"

If everything has been set up properly, you

should be rewarded with seeing the LED turn

on. You should also hear the Home device

response phrase “The LED is on.” In a similar

manner, speak the following phrase to turn off

the LED:

"OK Google, turn off the LED

However, there is still one more software

task to be done before the project is ready to

be tested: you must create an applet to turn

off the LED using a voice command. This is

easily accomplished using the same six steps

previously detailed for creating the applet to turn

on the LED. The only significant difference is

specifying the action URL. This one must be the

same as the URL turning on the LED with the

off extension appended. Figure 2-16 shows the

new action URL required to turn off the LED.

Failing to include this new applet will simply

cause the Home device to respond with the

spoken message “Sorry, can’t help with that, but

I am always learning.” This would be a great

indication that you forgot to create the applet.

Of course, you must also have the LED circuit

set up to view the LED being turned on and off.

 Complete Action Fields screen for
turning off the LE .

Figure 2-16 Test circuit schematic.Figure 2-17

Physical Pin # 12
BCM # 18

330 Ohm LED
Ground

J8

RasPi 3

02_Ch02.indd 43 2/1/19 1:42 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

44 Home Automation with Raspberry Pi

message appear in the browser window, as shown

in Figure 2-19.

In similar manner, I entered the turn-off URL

in the browser and observed the LED turn off.

The “LED off” message appeared in the browser

screen, as shown in Figure 2-20.

You can also use the RasPi local IP address to

test the RasPi server-side software. Just enter the

IP address using a browser on another computer

attached to your home network. In my case, that

would be 192.168.1.31 to turn on the LED and

192.168.1.31/off to turn off the LED.

You can even use a browser on the same RasPi

that is concurrently running the Web server.

Enter local host in a browser, which should

turn on the LED. Enter localhost/off to turn

off the LED. Note that you likely forgot to start

The LED should turn off after you after spoken

the phrase and have heard the response phrase

“The LED is off.” Please note that it may take

a second or two for the action to complete after

the phrase has been spoken because of normal

delays in activating the various Web services

and any latent connectivity issues that might

exist between your home network and your ISP

provider.

You will also want to test the project using

an ordinary Web browser just to confirm what

I mentioned earlier that you can turn the LED

on or off using a browser. Just remember that

there are no Web services involved with this

direct action. It is basically a good check on how

well the RasPi Web server functions. I entered

the turn-on URL in a browser on a computer

connected to my local network and saw that

the LED turned on. I also saw the “LED on”

 Physical test setup.Figure 2-18

02_Ch02.indd 44 2/1/19 1:42 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 45

AC-Powered Lamp Demonstration

The key component in this system design is

a Power Switch Tail II power control device.

Figure 2-21 shows this device.

This device is essentially a power cord that

is controlled by a low-level digital signal that

will be directly connected to a RasPi’s GPIO

pin. The Power Switch Tail II, which I will now

refer to as the PST2, uses an optically isolated

digital input to control a power relay capable

of handling up to 15 A at 120 VAC. The optical

isolation eliminates any safety concerns about

dealing with mains-type power with the RasPi

the Web server if you get a message “Connection

refused.”

Finally, you can also use a browser on a

smartphone or a WiFi-connected tablet to

control the LED. Just enter the appropriate

URL into the smartphone/tablet, and you will

be able to turn the LED on and off. The same

response messages shown in Figures 2-19 and

2-20 will appear on the smartphone/tablet

screen.

Extending Control Functions
At this point, you may be thinking that it is

great that a LED can be controlled by a Google

Home device, but how is that related to HA?

The answer is simple: almost any device that is

plugged into the AC mains may be controlled

using the same approach taken by the control of

a LED. The only difference lies in using different

technology to control a device supplying AC

power to a given device. The next demonstration

will control a common AC-powered lamp using

a RasPi GPIO pin. The only difference between

this demonstration and the preceding one is

that the GPIO pin will be connected to a special

AC power control device that has a low-power

control circuit already embedded in it.

 ”LED on” message in a browser
window.

Figure 2-19

 Power Switch Tail II.Figure 2-21

 ”LED off” message in a browser
window.

Figure 2-20

02_Ch02.indd 45 2/1/19 1:42 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

46 Home Automation with Raspberry Pi

really not a good idea. The PST2 has already

passed all appropriate UL and other safety

certifications and is ready to use.

Figure 2-23 is a simple schematic showing

how the RasPi pin 7 connects to a PST2.

Nothing is required for the connection other

than a pair of wires carrying the GPIO signal

and ground. In this case, I chose physical pin 7

(BCM pin 4) for the control signal. GPIO 4 (pin

7) connects to the PST2 (+ in) terminal, and the

RasPi GND (pin 6) connects to the PST2 (– in)

terminal.

board. The PST2 is also ruggedly constructed

and very well insulated, making it extremely

safe to use in a home environment. This power

control device can also handle loads up to 1.5

kilowatts (kW), which is well beyond anything

I will use in this demonstration.

The PST2 schematic is shown in Figure 2-22,

which points out the robust and safe design

that makes up the PST2. I highly recommend

that you purchase an appropriate number of

PST2s to control any AC power loads you may

be considering for both safety and convenience

sake. Building your own power controller is

R2

R1

LED1

J3

J2J1

Line SideLoad Side

MOV2

MOV1

1
2
3

+
–
Electrical
Ground

1
2
3

 BLK (L)
WHT (N)
GRN (G)

 BLK (L)
WHT (N)
GRN (G)

1
2
3

A1
Optoisolated

Driver

6 1

4 2

 PST2 schematic.Figure 2-22

 RasPi-to-PST2 connection schematic.Figure 2-23

Physical Pin # 7
BCM # 4

Physical Pin #6
GND

J8

RasPi 3

PST2

+

–

NOTE: Read text regarding
PST2 ground connection.

02_Ch02.indd 46 2/1/19 1:43 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 47

TABLE 2-1 AC Lamp Control Applet Parameters

Applet item Turn-on applet Turn-off apple

Request
phrase

Turn on AC lamp Turn off C lamp

Response
phrase

The AC lamp is on The AC lamp is
off

URL http://mytestsite
.org/AClampon

http://mytestsite
.org/AClampoff

Python Web Server Modifications

Two additional code snippets must be added to

the existing Python script to handle the new Web

requests that are received for AC lamp control.

The complete modified script is listed below. I

also renamed the script extended_test.py to reflect

the newly added functionalities concerning the

AC lamp.

CAUTION: Do not connect the PST2 ground terminal
to the RasPi ground. Simply leave it unconnected. It is
not required nor needed, and it could possibly be an
entry point for mains power if there were some odd and
strange failure on the PST2 load side.

All that is required now is to describe the two

applets required to control the AC lamp and

the corresponding modifications to the RasPi

Python Web server.

AC Lamp Applets

Two applets are required to have the Home

device control the AC lamp. The same six-step

applet creation that we used for LED control is

used for AC lamp control. The only differences

are detailed in Table 2-1.

Using RPi.GPIO and Flask for this script
import RPi.GPIO as GPIO
from flask import Flask

app = Flask(__name__)

This is the default method that is invoked without an extension
@app.route("/", methods=['GET', 'POST'])
def index():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(12, GPIO.OUT)
 print "Turning the LED on"
 GPIO.output(12, GPIO.HIGH)
 return "LED on"

This method is invoked when an "/off" extension is detected
@app.route("/off", methods=['GET','POST'])
def off():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(12, GPIO.OUT)
 print "Turning off the LED"
 GPIO.output(12, GPIO.LOW)
 return "LED off"

This method is invoked when an "/AClampon" extension is detected
@app.route("/AClampon", methods=['GET','POST'])
def AClampon():

02_Ch02.indd 47 2/1/19 1:43 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

48 Home Automation with Raspberry Pi

"OK Google, turn on AC lamp"

If everything has been set up properly, you

should be rewarded with seeing the lamp turn on

and hearing the response phrase “The AC lamp

is on.” In a similar manner, speak the following

phrase to turn off the lamp:

"OK Google, turn off C lamp"

The lamp should turn off after you have spoken

the phrase along with hearing the response

phrase “The AC lamp is off.” Figure 2-24 is a

terminal window screen shot showing the print

Test Run

You will be ready to test this new project once

the two additional applets are created, the

modified RasPi software is installed, and the

physical circuit is set up. Just execute the RasPi

software with

sudo python extended_test.py

Ensure that the PST2 is plugged into the AC

mains and an ordinary table lamp is connected

to the PST2. Also ensure that the lamp has been

turned on. It will not light because the PST2 has

not connected it to the AC mains. Now speak to

the Home device with this phrase:

 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(7, GPIO.OUT)
 print "Turning on the AC lamp"
 GPIO.output(7, GPIO.HIGH)
 return "AC lamp on"

This method is invoked when an "/AClampoff" extension is detected
@app.route("/AClampoff", methods=['GET','POST'])
def AClampoff():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(7, GPIO.OUT)
 print "Turning off the AC lamp"
 GPIO.output(7, GPIO.LOW)
 return "AC lamp off"

if __name__ == "__main__":
 app.run(host='0.0.0.0', port=80, debug=True)

 AC lamp terminal window control print statements.Figure 2-24

02_Ch02.indd 48 2/1/19 1:43 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 49

in Chapter 10, where more sophisticated control

signals are required to implement a wireless HA

system.

Wireless Communications Setup

The transmitter will generate an encoded RF

signal whenever a 5-V signal is applied to one

of its four data input pins. Figure 2-26 is a

connection block diagram for the complete

communications link showing both the

transmitter and receiver connected to the RasPi

and PST2, respectively.

Please note that I used a 5-V wall-wart power

supply to provide power to the receiver. The

receiver was installed on a small solderless

breadboard, which, in turn, was mounted on the

PST2 using double-backed tape. The physical

setup is shown in Figure 2-27.

It would be a simple matter to mount the

receiver in a plastic box for aesthetics and to

prevent any inadvertent damage to the exposed

statements associated with the Web requests for

the AC lamp.

You may have already realized by now that

there is a significant disadvantage to using the

PST2 in the manner described in this project.

The issue is that a wire-pair cable must be

connected between the RasPi and the PST2 in

order to control the power device. This may

not be a problem if you only have one RasPi

dedicated to one powered device. However, it

becomes problematic if you want to control

multiple loads that are situated relatively far

apart or even in separate rooms. Such a situation

requires running long lengths of wire cables to

different PST2s. This approach is not practical

and would be unsightly and unacceptable for

most HA installations. A much better, very

inexpensive wireless solution is presented in the

next section.

PST2 Wireless Control
It is a simple process to extend the range of

control between a RasPi and a PST2 power

device using wireless technology. I chose to use a

simple radio-frequency (RF) transmitter/receiver

pair that operates in the unlicensed 433-MHz

band. Figure 2-25 shows an inexpensive wireless

433-MHz RF module receiver and transmitter

remote control pair with built-in learning codes

for four-channel operation suitable for use with

a RasPi.

There is a coiled wire antenna that is 52

centimeters (cm) long for both the transmitter

and the receiver. These antennas were specifically

cut to this length for tuned operation at 433

MHz. The key to using this design is that only

an on/off signal needs to be sent between the

RasPi and the PST2. This solution will not work

if any complex data are required to be sent or

a response signal is sent. However, I will be

discussing a much more elegant wireless solution

 A 433-MHz transmitter/receiver pair.Figure 2-25

02_Ch02.indd 49 2/1/19 1:43 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

50 Home Automation with Raspberry Pi

scheme is used between the transmitter and

each receiver. All you need to do is copy my

single-channel implementation to any of the

other three channels. The only additional

software needed would be the applets and RasPi

Web server changes required to support the

additional devices control by the extra channels.

components. Note that no dangerous voltages

are exposed in the breadboard version.

You should also realize that this system design

will support four separate remote PST2 devices,

where each device has its own dedicated RF

channel. These channels will not interfere with

each other because a simple digital encoding

5V 5V

RasPi Xmit Receiver PST2

4 K1

GND GND
GND

D0

–IN

+IN

 Wireless connection block diagram.Figure 2-26

 PST2 with wireless receiver.Figure 2-27

02_Ch02.indd 50 2/1/19 1:43 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 51

which I renamed remote_test.py to indicate its

new purpose:

My only caution is that interference might be

present if you decide to use another four-channel

transmitter/receiver pair in the same vicinity as

this one. Inexpensive transmitter/receiver pairs

such as the one I used usually do not incorporate

interference safeguards from similar units.

Figure 2-28 shows how power and input

signals are applied to the transmitter. I used

the K1 input, which shows a pushbutton that

when pressed will connect that input to ground.

This action means that I had to change the

RasPi output on GPIO pin 4 (BCM mode)

from normally LOW to normally HIGH. This

was a fairly simple change and is shown in the

following revised extended_test.py code listing,

 Wireless link power and signal
connections.

Figure 2-28

import time
Using RPi.GPIO and Flask for this script
import RPi.GPIO as GPIO
from flask import Flask

Required to set GPIO physical pin 7 normally HIGH
GPIO.setmode(GPIO.BOARD)
GPIO.setup(7, GPIO.OUT)
GPIO.output(7, GPIO.HIGH)

app = Flask(__name__)

This is the default method that is invoked without an extension
@app.route("/", methods=['GET', 'POST'])
def index():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(12, GPIO.OUT)
 print "Turning the LED on"
 GPIO.output(12, GPIO.HIGH)
 return "LED on"

This method is invoked when an "/off" extension is detected
@app.route("/off", methods=['GET','POST'])
def off():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(12, GPIO.OUT)
 print "Turning off the LED"
 GPIO.output(12, GPIO.LOW)
 return "LED off"

This method is invoked when an "/AClampon" extension is detected

02_Ch02.indd 51 2/1/19 1:43 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

52 Home Automation with Raspberry Pi

“OK Google, toggle the AC lamp” to switch the

lamp mode. I chose not to use such a phrase

because many nontechnical users would have

no idea what was being requested, and the user

would already need to know the current lamp’s

state. The lesson for this situation is sometimes

that you have to be more expansive in your

coding to simplify the user’s experience.

Figure 2-29 is a close-up photograph of the

four-channel receiver in which you can clearly

see where you will need to solder the wire coil

antenna. The two connection points going to the

PST2 are also clearly indicated. The receiver’s

Learning button is shown in Figure 2-30.

The receiver must be set up in the toggle or

latching mode in order for the system to work

properly. The following steps set the receiver to

a particular mode:

The modification details to the extended_test.py

script include

■n Making the default output to the 433-MHz

receiver a HIGH state

■n Changing the AClampon and AClampoff

script portions to emit a 0.25-second pulse

instead of a continuous level either HIGH or

LOW

You may have noticed that the AClampon and

AClampoff portions are now nearly identical

except for the response messages. This is because

the RF receiver is set to be in a latching or toggle

mode, which means the state changes form

HIGH to LOW or LOW to HIGH for every

received pulse. I could have used only a single

applet to accommodate this situation, but that

would have meant using a single phrase such as

@app.route("/AClampon", methods=['GET','POST'])
def AClampon():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(7, GPIO.OUT)
 print "Turning on the AC lamp"
 # Next three statements send a 0.25 second "LOW" pulse
 GPIO.output(7, GPIO.LOW)
 time.sleep(0.25)
 GPIO.output(7, GPIO.HIGH)
 return "AC lamp on"

This method is invoked when an "/AClampoff" extension is detected
@app.route("/AClampoff", methods=['GET','POST'])
def AClampoff():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(7, GPIO.OUT)
 print "Turning off the AC lamp"
 # Next three statements send a 0.25 second "LOW" pulse
 GPIO.output(7, GPIO.LOW)
 time.sleep(0.25)
 GPIO.output(7, GPIO.HIGH)
 return "AC lamp off"

if __name__ == "__main__":
 app.run(host='0.0.0.0', port=80, debug=True)

02_Ch02.indd 52 2/1/19 1:43 PM

Chapter 2 n Interfacing a Google Home Device with a Raspberry Pi 53

The AC lamp turned on and stayed on after

the trigger phrase was spoken to the Home

device. Likewise, the lamp turned off when the

off-action trigger phrase was spoken. This last

demonstration concludes this chapter.

Summary
This chapter started with a detailed discussion

of how the Google Home Personal Voice

Assistant works. I also described how to set up

the Home device in its normal configuration.

The next section described how to logically

connect the Home device to a RasPi. The

first step in the connection process was to use

the ifttt.com website to create a Web applet.

This applet converts a voice command into an

actionable Web request. This Web request is then

sent over the Internet to a Web server hosted on

the HA RasPi. A very detailed discussion was

provided concerning the six-step process used to

create the Web applets.

The RasPi Web server software was next

described. A Python script was listed that

handles the incoming Web requests and

creates appropriate responses using the GPIO

subsystem.

1. Press the Learning button once to set the

momentary mode. This means that the

channel output will remain LOW for as long

as a signal is being received.

2. Press the Learning button twice to set the

toggle mode. This means that the channel

output will change state, that is, from HIGH

to LOW or LOW to HIGH, and remain in

the new state.

3. Press the Learning button three times to set

the interlocked mode. This means that the

selected channel will be active, and all other

channels will become inactive.

Test Run

I connected the AC lamp to the PST2 in

exactly the same way as I did in the preceding

demonstration. I next plugged in the 5-V wall-

wart power supply for the receiver to power it

on. I next pressed the Learning button twice to

set it to the latching or toggle mode. You will

only have to set the mode one time. The receiver

“remembers” the setting even after the 5-V

power has been turned off and on.

 Four-channel receiver.Figure 2-29

 Learning button.Figure 2-30

02_Ch02.indd 53 2/1/19 1:43 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

54 Home Automation with Raspberry Pi

demonstration was an extension of the second

in which PST2 control was remotely extended

using a four-channel transmitter/receiver pair.

This arrangement allowed for great flexibility in

the control of mains-powered devices in an HA

environment.

The first demonstration concerned the control

of a single LED. The LED was turned on and

off using commands spoken into the Home

device. The next demonstration controlled an

AC lamp using a similar voice command. A

power control device called the PST2 was used

between the RasPi and the AC lamp. The final

02_Ch02.indd 54 2/1/19 1:43 PM

C H A P T E R 3

Raspberry Pi Implements
a Google Voice Assistant

55

CHAPTER 1 SHOWED YOU HOW to connect the

inexpensive Google Voice Kit to a RasPi

and have the RasPi respond to spoken voice

commands. Chapter 2 showed you how to

interconnect a Google Home device to a RasPi

and again have the RasPi respond to spoken

voice commands detected by the Home device.

In this chapter, I will show you how to use the

RasPi all by itself to emulate a Google Voice

Assistant and respond directly to spoken

voice commands. This approach will be the

least costly of all the Google Voice Assistant

implementations but will likely require the

most effort on your part to duplicate the

demonstrations.

I would also like to extend my appreciation

to several Google Home–type device developers

and especially to Keval Patel for his great July

2017 blog, “Turn Your Raspberry Pi into a

Homemade Google Home.” I used a good deal

of information from this blog, although I had to

make several modifications to make an operable

system. This is not a criticism of Keval but

instead is a consequence of using open-source

software, which is dynamic and constantly

changing.

Audio Setup
The initial steps in building your own Google

Home assistant involve setting up the audio

components supporting the project. The RasPi

audio output should be forced to use the 3.5-mm

Parts List

Item Model Quantity Source

RasPi 3 B or B+ 1 adafruit.com
amazon.com
mcmelectronics.com

USB microphone Commodity 1 amazon.com

USB speaker Commodity 1 amazon.com

Power Switch Tail II 1 amazon.com

AC table lamp Commodity 1 Home improvement store

Hobby-grade servo HiTEC HS-311 1 amazon.com

6-V DC power supply Commodity 1 adafruit.com

03_Ch03.indd 55 2/1/19 1:44 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

56 Home Automation with Raspberry Pi

You should start hearing “front left” coming

from the speaker(s) and also see the status

messages shown in Figure 3-1.

The next portion of the setup concerns

the USB microphone. I used a large,

semiprofessional USB microphone for this

project, which is shown in Figure 3-2. I used

this simply because I had already purchased it

for use in an earlier AV project. You can choose

to purchase a similar device or a much more

inexpensive model, such as the one shown in

Figure 3-3.

The inexpensive model also should be

adequate for this project because all it has to

do is detect spoken voice commands. The more

expensive model had to adequately record both

music and voice signals.

AV jack located on the board. This is done by

entering the following command in a terminal

window:

sudo raspi-config

Select Advanced Options, and then click on the

Audio option. Next, click on

2.Forceaudiooutput3.5mmjack

Any audio signals generated by the RasPi will

now be directed to the onboard AV jack. You

should now ensure that the amplified USB

speaker(s) is(are) plugged into the RasPi. Next,

enter the following command into the terminal

window:

speaker-test-twav

 Speaker test screen display.Figure 3-1

03_Ch03.indd 56 2/1/19 1:44 PM

Chapter 3 n Raspberry Pi Implements a Google Voice Assistant 57

matter what you say because it will be recorded

in an audio file for an immediate payback. The

playback is initiated by the following command:

aplay--format=S16_LE--rate=16000

test.raw

You should start hearing the recording that

you just made through the attached speaker(s).

Recheck the RasPi configuration settings and the

component connections if you do not hear the

recording.

Installing and Configuring
the Python 3 Environment
The Google Assistant software suite requires

that a Python 3 environment be installed and

configured on the RasPi. The initial step is to

ensure that all the current software is updated.

Enter the following command in a terminal

window:

sudo apt-get update

The next command sequence will install and set

up a Python 3 environment:

sudo apt-get install python3-dev
 python3-venv
python3 -m venv env
env/bin/python -m pip install --upgrade
pipsetuptools

Certain required Python dependencies were also

installed using this command sequence.

You will now need to activate the Python

environment by entering this next command:

sourceenv/bin/activate

You should notice that a virtual Python

environment is now in place because the terminal

prompt is prepended with (env).

In either case, just enter the following

command to record a brief audio clip to test the

USB microphone:

arecord--format=S16_LE--duration=10

--rate=16000 --file-type=raw test.raw

Then speak directly into the microphone for

approximately 10 seconds. It really does not

 USB microphone.Figure 3-2

 Inexpensive USB microphone.Figure 3-3

03_Ch03.indd 57 2/1/19 1:44 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

58 Home Automation with Raspberry Pi

The first step is log onto your Google account.

If don’t have an account, you could not have

completed the Chapter 1 project, and hence, all

the following steps are required. Go and create

an account at https://accounts.google.com/

SignUp?hl=en; otherwise, log into your existing

account.

Next, go to the Google Cloud Platform

website at https://console.cloud.google.com/

getting-started and create a new project. This

is easily accomplished by clicking on the drop-

down arrow in the Chapter textbox located next

to the Google Cloud Platform title. At least

one project should be displayed in the listing,

reflecting the Chapter 1 demonstration. Figure

3-4 shows the screen after I clicked on the drop-

down arrow.

Click on the New Project button located at the

upper right-hand corner of the screen to start a

new project. You first have to provide a project

The Google Assistant Software Development

Kit (SDK) created for the RasPi now needs to be

downloaded and installed. Enter this command

to do that:

python -m pip install --upgrade
 google-assistant-library

The Google Assistant software should now be

installed on the RasPi. It is now time to focus on

the Google cloud portion of the system.

Installing and Enabling the
Google Cloud Project
There are number of steps in this installation

process, some of which are duplicates of steps

taken in the Cloud installation process shown

in Chapter 1. I will go through all the steps to

ensure that the project is set up properly.

 New project screen.Figure 3-4

03_Ch03.indd 58 2/1/19 1:44 PM

Chapter 3 n Raspberry Pi Implements a Google Voice Assistant 59

textbox to bring up the appropriate service. Click

on the Google Assistant API box once it appears,

and finally click on the Enable button. This last

series of actions will link the Google Assistant

services to your Google account, thus enabling

the voice-recognition function as well as all the

other Google Home functions.

Next, click on Credentials in the column

labeled APIs & Services, which should have

appeared on the browser after the Google

Assistant services were enabled. This action will

take you to another screen where you actually

create the project credentials by clicking on

the drop-down arrow in the Create Credentials

screen, as shown in Figure 3-6.

Select OAuth Client ID to proceed, as shown

in Figure 3-7.

name. You may choose any name that makes

sense to you. I chose the name My Google Home

to reflect the project being built. It will take a

few seconds for the Google Cloud Platform

website to create the project. Once created, you

will be returned to the preceding screen.

Once again, click on the drop-down arrow in

the Projects textbox, and select the newly created

project. You will be shown a configuration

screen, a portion of which is shown in Figure

3-5. You will need to click on Enable APIs

and get credentials such as keys in the Getting

Started section.

You will first need to enable the Google

Assistant API. You can do this by clicking on the

project Dashboard icon and then clicking on the

Enable APIs and Services button. You should

next enter Google Assistant in the search

 API setup screen.Figure 3-5

 Create Credentials screen.Figure 3-6

 Credentials selection screen.Figure 3-7

03_Ch03.indd 59 2/1/19 1:44 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

60 Home Automation with Raspberry Pi

You will now need to download the resulting

JSON file to the RasPi. Notice the annotation

in the figure that points out the download icon.

Just expand the screen if you do not see the

icon. The JSON file will be downloaded to the

RasPi after you click on the icon. It typically

will be stored in the Downloads directory. You

will next need to rename it and move it into

the Home directory. The default JSON name is

incredibly complex, and you should not try to

copy it manually. Instead, enter the following

commands:

cdDownloads

mv client_secret_ <press the tab key for
autocompletion>~/assistant.json

These commands will move the new credentials

file from the Downloads directory to the Home

directory and rename it assistant.json, a

much easier file name to handle.

Authenticating the RasPi to
the Google Cloud Platform
You first need to install the authorization

tool. Ensure that you are in the virtual Python

environment. I will now include the prepend to

The Create OAuth Client ID screen appears,

as shown in Figure 3-8.

Enter your project name as I did for my

project, and ensure that you select Other for the

Application type. This is very important because

the project will not build correctly unless the

Other type has been selected. You now need

to click on the Create button to generate the

appropriate credentials for your project. This will

take a few seconds, and you should see a results

screen similar to the one shown in Figure 3-9.

 Create OAuth Client ID screen.Figure 3-8

 Generated credentials.Figure 3-9

03_Ch03.indd 60 2/1/19 1:44 PM

Chapter 3 n Raspberry Pi Implements a Google Voice Assistant 61

LED Operations Indicator

A LED will indicate when an active conversation

is happening with the Google Assistant service.

The LED is connected to GPIO pin 25 (BCM

mode), as shown in the Fritzing diagram (Figure

3-11).

The LED indicator is activated by means

of a Google Assistant callback function.

Callback functions are events that are

triggered by specific actions. For instance, the

EventType.ON_CONVERSATION_TURN_STARTED

callback will be triggered when the conversation

with the Google Assistant begins. Likewise,

the EventType.ON_CONVERSATION_TURN_

FINISHED callback will be triggered whenever

the conversation is terminated. LED indicator

activation is tied directly to each of these

callbacks, as you will shortly see in the Python

script listing.

It is important to realize that LED activation

or inactivation is triggered by a state change

happening with the Google Assistant software.

It is not directly related to actual data but

instead to the state of data. State of data is

called metadata because it reflects some property

of data, not the actual value or content of those

data. Using metadata for home automation

(HA) control is problematic at best because

of severe limitations on what can be achieved

using strictly metadata. Some readers may

recall a mains power device called the Clapper

indicate this situation. Do not enter it as part of

the next command:

(env) python -m pip install
 --upgrade google-auth-oauthlib[tool]

Next, execute the tool using the following

command:

(env) google-oauthlib-tool
--client-secrets"PATH_TO_YOUR_JSON_

FILE" --scope https://googleapis.com/
auth/assistant-sdk-prototype
--save --headless

In my case, I substituted ~/assistant.json for

"PATH_TO_YOUR_JSON_FILE". You should do

the same if you followed my previous download

instructions.

The result of this last command is an

automatically generated authentication URL,

as shown in Figure 3-10. You should copy and

paste the authentication URL into a browser.

Do not try to copy the complex URL manually.

The authentication URL will create a complex

authorization code that you should copy and

paste back into the terminal window at the

prompt Enter the Authorization Code. The

authentication tool, which is still running on the

RasPi, will now automatically place the JSON

credentials file into the appropriate directory

that the Google Assistant requires to grant

permission for normal functions.

 Authentication URL.Figure 3-10

03_Ch03.indd 61 2/1/19 1:44 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

62 Home Automation with Raspberry Pi

software. This is accomplished by the following

Python script. However, the RPi.GPIO library

must first be installed to allow for programmatic

control of the GPIO pins. This installation will

happen after you enter the following command:

pipinstallRPi.GPIO

Once you have installed RPi.GPIO, you will be

ready to enter the Python script. Either enter

the script into the nano editor or simply

download it from this book’s companion

website, www.mhprofessional.com/

NorrisHomeAutomation. The script is named

main.py and must be stored in the Home

directory.

that was widely advertised on TV many years

ago. The user would clap his or her hands to

turn on a device such as an old-fashion TV and

clap again to turn it off. No actual data were

received by the clapper device other than a noise

impulse created by the hand clap. The presence

or absence of impulse noise was effectively

the metadata for the clapper. I believe that it

worked, but eventually it was superseded by

much more flexible remote controls that actually

transmitted real data in lieu of metadata.

Python Script

The RasPi requires a program to both

authenticate and initialize the Google Assistant

 LED indicator Fritzing diagram.Figure 3-11

03_Ch03.indd 62 2/1/19 1:44 PM

Chapter 3 n Raspberry Pi Implements a Google Voice Assistant 63

#!/usr/bin/env python

from__future__importprint_function

import argparse
import os.path
importjson

import google.oauth2.credentials
importRPi.GPIOasGPIO

from google.assistant.library import Assistant
from google.assistant.library.event import EventType
from google.assistant.library.file_helpers import existing_file

GPIO.setmode(GPIO.BCM)

GPIO.setup(23,GPIO.OUT)

def process_event(event):
"""Prettyprintsevents.

Prints all events that occur with two spaces between each new conversation and a single
spacebetweenturnsofaconversation.

 Args:
 Event(event.Event): The current event to process.
"""

 if event.type == EventType.ON_CONVERSATION_TURN_STARTED:
print()

GPIO.output(25,True)

print(event)

if (event.type == EventType.ON_CONVERSATION_TURN_FINISHED and event.args and not
event.args['with_follow_on_turn']):
print()

GPIO.output(25,False)

def main():
 parser = argparse.ArgumentParser(
 formatter_class=argparse.RawTextHelpFormatter)
 parser.add_argument('--credentials', type=existing_file,
 metavar='OAUTH2_CREDENTIALS_FILE',
 default=os.path.join(
 os.path.expanduser<'/home/pi/.config'),
 'google-oauthlib-tool',
 'credentials.json'
),

 help='Path to store and read OAuth2 credentials')
 args = parser.parse_args()
 with open(args.credentials, 'r') as f:
 credentials = google.oauth2.credentials.Credentials<token=None,
**json.load(f))

03_Ch03.indd 63 2/1/19 1:44 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

64 Home Automation with Raspberry Pi

Next, speak this phrase clearly into the

microphone: “OK Google, what time is it?” You

should be delighted to hear the words “The time
is fi e forty-nine.” Of course, your time will be

different, but the system should respond. In

addition, you should have observed the LED

being lit when you started the conversation. It

should have gone off after the system responded

with the time, indicating that the conversation

had ended.

Conversations may be brief, as in the case of

requesting the time, or can be extended if the

response is lengthy. Look at Figure 3-12, where

the weather report was quite extensive. This

conversation lasted over 10 seconds.

At this point, I have presented everything

you need to build your own Google Home

device using only a RasPi with two USB

peripherals. This project is a good emulation

of the commercial Google Home unit, but it

is still quite limited in its usefulness for HA

applications. The next section discusses how to

significantly increase the device’s flexibility and

utility, especially for use in HA systems.

Extending the RasPi
Google Home Device
The device as configured at this point has a very

limited use in an HA system. It could function

in a “clapper-like” mode, as I explained earlier.

That restricted operational mode was due to

the device only responding to state changes

TIP: The above listing contains very long sets of
instructions that display on multiple lines in the listing.
The correct script requires that the long instructions sets
be entered without line breaks and in accordance with
Python’s indention format. I highly recommend that you
download the script from this book’s website unless you
are very comfortable in writing Python scripts.

You will now need to create a shell script

that will initialize and run the Google Assistant

software. Enter the following command to

start the nano editor with script named

google-assistant-init.sh:

sudo nano google-assistant-init.sh

Next, enter the following into the editor:

#!/bin/sh
/home/pi/env/bin/python3 -u
 /home/pi/main.py

Save the file and exit the editor. Now grant

executable permissions to the shell script by

entering this command:

sudo chmod +x google-assistant-init.sh

You are now finally ready to test the system.

Ensure that everything is connected, including

the USB microphone and speaker(s).

Test Run

Enter the following command to start the

Google Assistant on the RasPi:

bash google-assistant-init.sh

 with Assistant(credentials,"My Google Home device") as assistant:
 for event in assistant.start():
process_event(event)

if __name__ == '__main__':
main()

03_Ch03.indd 64 2/1/19 1:44 PM

Chapter 3 n Raspberry Pi Implements a Google Voice Assistant 65

Test Setup

Figure 3-13 is a Fritzing diagram showing

how to set up both the LED and the PST2

peripherals with the RasPi. You should note that

the original LED connected to GPIO pin 25 is

also shown in the diagram. Table 3-1 details all

the connections between the T-Cobbler and the

test peripherals.

conveyed by metadata. Fortunately, the Google

Assistant software provides the capability to

parse the actual data present in a conversation.

This capability will allow for a great increase

in the utility of the device, especially for HA

applications. I have created duplicates of two

demonstrations that were presented in Chapter

2. The first one deals with control of a LED and

the second one with control of an AC lamp. The

second demonstration also uses a Power Switch

Tail II (PST2), which I introduced in Chapter 2.

 Conversation log.Figure 3-12

03_Ch03.indd 65 2/1/19 1:44 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

66 Home Automation with Raspberry Pi

LED, whereas GPIO pin 24 controls the PST2.

The key statement that allows the spoken data to

be parsed is

speech_text = event.args["text"]

The Python string variable speech_text now

contains all the user spoken text. This variable

consequently can be tested to determine whether

it contains specific instructions, which will then

be acted on. For example, to turn on the AC

lamp, the user must say, “OK Google, turn on the
AC lamp.” The following code snippet tests the

string variable to determine whether it contains

this phrase and, if so, activates the appropriate

GPIO pin connected to the PST2:

if speech_text == 'turn on the AC lamp':
GPIO.output(24,GPIO.HIGH)

Table 3-1 Test Connections

Peripheral

Connection

RasPi Physical

Pin Number

RasPi BCM

Pin Number

Resistor R1 22 25

Resistor R2 16 23

PST2 1(+) 18 24

PST2 2 (–) 14 GND

LED 1 cathode 14 GND

LED 2 cathode 14 GND

Modified Python Control Script

The Python control script that follows

was modified from the main.py script that

was presented previously. It has additional

statements for the control of two additional

GPIO pins, one to control a LED and the other

to control the PST2. GPIO pin 23 controls the

 Fritzing diagram for test setup.Figure 3-13

03_Ch03.indd 66 2/1/19 1:44 PM

Chapter 3 n Raspberry Pi Implements a Google Voice Assistant 67

it is named main_extended.py on this book's

companion website, www.mhprofessional.com/

NorrisHomeAutomation, but must be renamed

main.py and placed in the Home directory to

operate correctly with the RasPi.

Similar code statements detect phrases for

controlling the LED and turning off the AC

lamp.

The following listing is a completely modified

main.py for the expanded control. Note that

#!/usr/bin/env python

from__future__importprint_function

import argparse
import os.path
importjson

import google.oauth2.credentials
importRPi.GPIOasGPIO

from google.assistant.library import Assistant
from google.assistant.library.event import EventType
from google.assistant.library.file_helpers import existing_file

GPIO.setmode(GPIO.BCM)

GPIO.setup(23,GPIO.OUT)

GPIO.setup(24,GPIO.OUT)

GPIO.setup(25,GPIO.OUT)

def process_event(event):
"""Prettyprintsevents.

 Prints all events that occur with two spaces between each new
 conversation and a single space between turns of a conversation.
 Args:
 event(event.Event): The current event to process.
"""

 if event.type == EventType.ON_CONVERSATION_TURN_STARTED:
print()

GPIO.output(25,True)

print(event)

if(event.type==EventType.ON_CONVERSATION_TURN_FINISHEDand

 event.args and not event.args['with_follow_on_turn']):
print()

GPIO.output(25,False)

 if event.type == EventType.ON_RECOGNIZING_SPEECH_FINISHED:
 speech_text = event.args["text"]
 print("speech text: " + speech_text)
 if speech_text == 'turn on the LED':
GPIO.output(23,GPIO.HIGH)

03_Ch03.indd 67 2/1/19 1:44 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

68 Home Automation with Raspberry Pi

I first tested the new LED with the spoken

command, “OK Google, turn on the LED.” I

observed that the new LED did light up as

expected. The original LED indicating an

ongoing conversation also lit but stayed on for

only the conversation duration.

I next spoke the phrase, “OK Google, turn off
the LED.” I then observed the new LED turn off,

which confirmed that proper LED control was

happening.

Similarly, speaking the phrases, “OK Google,
turn on the AC lamp” and “OK Google, turn off

TIP: The above listing contains very long sets of
instructions that display on multiple lines in the listing.
The correct script requires that the long instructions sets
be entered without line breaks and in accordance with
Python’s indention format. I highly recommend that you
download the script from this book’s website unless you
are very comfortable in writing Python scripts.

Test Run

The modified main.py is run using the same shell

script command previously described:

bash google-assistant-init.sh

 if speech_text == 'turn off the LED':
GPIO.output(23,GPIO.LOW)

 if speech_text == 'turn on the AC lamp':
GPIO.output(24,GPIO.HIGH)

 if speech_text == 'turn off the AC lamp':
GPIO.output(24,GPIO.LOW)

def main():
 parser = argparse.ArgumentParser(
 formatter_class=argparse.RawTextHelpFormatter)
 parser.add_argument('--credentials', type=existing_file,
 metavar='OAUTH2_CREDENTIALS_FILE',
 default=os.path.join(
 os.path.expanduser('/home/pi/.config'),
 'google-oauthlib-tool',
 'credentials.json'
),

 help='Path to store and read OAuth2 credentials')
 args = parser.parse_args()
 with open(args.credentials, 'r') as f:
 credentials = google.oauth2.credentials.Credentials(token=None,
**json.load(f))

 with Assistant(credentials,"My Google Home device") as assistant:
 for event in assistant.start():
process_event(event)

if __name__ == '__main__':
main()

03_Ch03.indd 68 2/1/19 1:44 PM

Chapter 3 n Raspberry Pi Implements a Google Voice Assistant 69

Basic Servo Facts

It is very important to understand how a servo

functions before attempting to create a program

to control one. An analog servo is essentially an

electric motor that incorporates an electronic

control circuit that receives periodic digital

pulses and positions or rotates the motor shaft in

response to those pulses. Figure 3-15 is a block

diagram illustrating the principal components

that make up an analog servo.

The input digital pulse train that controls the

servo’s shaft position is known as a pulse-width

modulation (PWM) waveform. The width of

the high portion of the periodic pulse train is

exactly proportional to the shaft position. Pulse

widths range from 1.0 to 2.0 milliseconds (ms)

the AC lamp,” controlled the AC lamp through

the PST2 peripheral, as it had in Chapter 2’s

demonstration. Of course, you can extend the

PST2 range by using the RF devices I discussed

in Chapter 2. You still need to modify the

preceding script to accommodate the active

low impulse required by the RF receiver using

exactly the same code listed in the Chapter 2

Python script.

These simple demonstrations amply show that

the RasPi Google Home device is now capable

of controlling a variety of devices, including

mains-powered devices.

Still More Extending of the
RasPi Google Home Device
You probably have noticed by now that all

the control actions implemented on the RasPi

Google Home device have been binary. By this I

mean that the device being controlled is either on

or off. While this situation is perfectly acceptable

for most HA applications, there are some

applications where the device must be controlled

in a more granular sense. I have developed an

approach that allows for the direct interpretation

of spoken commands into equivalent RasPi

control actions beyond the simple on/off control

states.

I will show how this may be accomplished

in the next demonstration using a hobby-grade

servo system. The servo I used is shown in

Figure 3-14. It is a relatively inexpensive model

yet is perfectly suited for this demonstration.

You might at this point question the use of

a servo in an HA application. I would respond

that servos are often used in home security

applications to remotely position Web-based

surveillance cameras. In any case, the primary

purpose of this demonstration is to show you

how to control an HA device beyond simply

turning it on or off.

 Hobby-grade servo.Figure 3-14

 Analog servo block diagram.Figure 3-15

Rotation

Output Shaft

Positon
Sensor

Error Signal
Input Pulse TrainError Detection

Ampliÿer

A
+

–

DC Motor
Gearbox

for Speed
Reduction

03_Ch03.indd 69 2/1/19 1:44 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

70 Home Automation with Raspberry Pi

Test Setup

The Fritzing diagram in Figure 3-17 shows

how the servo is connected to the existing

demonstration hardware. You should notice that

I used a separate 6-V power supply for the servo.

Do not try to use the RasPi 5-V supply because

there is insufficient current to drive the servo

and the RasPi simultaneously. You will cause

the RasPi to crash if you attempt to connect the

servo power input to the 5-V supply. The 3.3-V

GPIO pin output voltage is adequate to control

the servo signal line without any issue.

Python Control Script Incorporating
the PWM Option

The Rpi.GPIO library provides the means to

easily generate PWM signals suitable for servo

control. The essential servo control parameters

and correspond to ±60° shaft positions. A series

of high-level pulses with widths of 1.5 ms and a

frequency of 50 hertz (Hz) will cause the shaft

position to be at its neutral position or midrange

between the ±60° shaft end positions. Figure

3-16 shows a 50-Hz, 1.5-ms PWM waveform.

The Python software controlling the servo

must generate a pulse width corresponding to

the commanded position for the servo shaft

position angle.

20.0 mS
1.5 mS 1.5 mS

 A 1.5-ms pulse-width, 50-Hz PWM
waveform.

Figure 3-16

 Fritzing diagram for servo test setup.Figure 3-17

03_Ch03.indd 70 2/1/19 1:44 PM

Chapter 3 n Raspberry Pi Implements a Google Voice Assistant 71

I adjusted the shaft position notation from the

±60° ranges to a single 0–120° range to facilitate

the spoken commands used with the RasPi

Google Home device. The phrase “OK Google
turn servo to zero” will actually cause the servo

shaft to turn to the –60° position. Likewise, the

phrase “OK Google turn servo to one hundred
twenty” will cause the servo shaft to turn to the

60° position. Finally, the phrase “OK Google turn
servo to sixty” will position the servo shaft to the

neutral or 0° position.

The following is the modified Python script

incorporating the PWM control statements. It is

named main_servo.py on this book's companion

website but must be renamed main.py in the

Home directory.

for the hobby servo used in this demonstration

are listed in Table 3-2. Please note that the pulse

width times for the hobby grade servo used

in this demonstration are considerably longer

than the standard pulse widths discussed above.

This is not unusual and is primarily due to the

inexpensive components used in such a device.

You should always read the manufacturer’s

datasheet to ensure you are using the correct

timing information for the device in use.

Table 3-2 Servo Control Parameters

Parameter Value

Frequency 50 Hz (20-ms period)

Neutral position pulse
width

7.5 ms

-60° position pulse width 5.0 ms

+60° position pulse width 10.0 ms

Power supply 6 V

#!/usr/bin/env python

from__future__importprint_function

import argparse
import os.path
importjson

import google.oauth2.credentials
importRPi.GPIOasGPIO

from google.assistant.library import Assistant
from google.assistant.library.event import EventType
from google.assistant.library.file_helpers import existing_file

GPIO.setmode(GPIO.BCM)

GPIO.setup(18,GPIO.OUT)

GPIO.setup(23,GPIO.OUT)

GPIO.setup(24,GPIO.OUT)

GPIO.setup(25,GPIO.OUT)

#setupPWMoutputonpin18ata50Hzrate

pwm=GPIO.PWM(18,50)

start the PWM pulses for a 0 degree position
pwm.start(5.0)

03_Ch03.indd 71 2/1/19 1:44 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

72 Home Automation with Raspberry Pi

def process_event(event):
"""Prettyprintsevents.

 Prints all events that occur with two spaces between each new
 conversation and a single space between turns of a conversation.
 Args:
 event(event.Event): The current event to process.
"""

 if event.type == EventType.ON_CONVERSATION_TURN_STARTED:
print()

GPIO.output(25,True)

print(event)

if(event.type==EventType.ON_CONVERSATION_TURN_FINISHEDand

 event.args and not event.args['with_follow_on_turn']):
print()

GPIO.output(25,False)

 if event.type == EventType.ON_RECOGNIZING_SPEECH_FINISHED:
 speech_text = event.args["text"]
 print("speech text: " + speech_text)
 if speech_text == 'turn on the LED':
GPIO.output(23,GPIO.HIGH)

 if speech_text == 'turn off the LED':
GPIO.output(23,GPIO.LOW)

 if speech_text == 'turn on the AC lamp':
GPIO.output(24,GPIO.HIGH)

 if speech_text == 'turn off the AC lamp':
GPIO.output(24,GPIO.LOW)

 if speech_text == 'turn Servo to 0':
 pwm.ChangeDutyCycle(5.0)
 if speech_text == 'turn Servo to 30':
 pwm.ChangeDutyCycle(6.25)
 if speech_text == 'turn Servo to 60':
 pwm.ChangeDutyCycle(7.5)
 if speech_text == 'turn Servo to 90':
 pwm.ChangeDutyCycle(8.75)
 if speech_text == 'turn Servo to 120':
 pwm.ChangeDutyCycle(10.0)
 if speech_text == 'turn Servo off':
pwm.stop()

def main():
 parser = argparse.ArgumentParser(
 formatter_class=argparse.RawTextHelpFormatter)
 parser.add_argument('--credentials', type=existing_file,
 metavar='OAUTH2_CREDENTIALS_FILE',
 default=os.path.join(
 os.path.expanduser('/home/pi/.config'),

03_Ch03.indd 72 2/1/19 1:44 PM

Chapter 3 n Raspberry Pi Implements a Google Voice Assistant 73

I next spoke the phrase “OK Google, turn
servo one hundred twenty.” I then observed the

servo turn fully clockwise to one of its limiting

positions. The other limiting position in my

context is the 0º command. I went through all

the other positional commands, confirming that

the servo did reposition as expected.

Finally, I spoke the phrase “OK Google, turn
servo off.” I observed that the servo stopped

running, as can be seen by recognizing that it is

no longer making any minute vibrations.

This last demonstration showed that a RasPi

Google Home device is capable not only of

binary control but also, when using appropriate

programming extensions, of generating specific

and unique device control actions. The use

of this extended control approach is very

efficient when compared with implementing a

similar approach using Web-based requests, as

was demonstrated in Chapter 2. In the latter

approach, you have to create many additional

applets that would issue granular servo control

movements. Additionally, the RasPi Web server

would require an equal number of conditional

blocks to process the unique Web requests for

each servo positioning request. This additional

complexity is completely removed when using

my approach as detailed in this chapter. The

TIP: The above listing contains very long sets of
instructions that display on multiple lines in the listing.
The correct script requires that the long instructions sets
be entered without line breaks and in accordance with
Python’s indention format. I highly recommend that you
download the script from this book’s website unless you
are very comfortable in writing Python scripts.

Test Run

The modified main.py is run using the same shell

script command described previously:

bash google-assistant-init.sh

I first tested the servo to move to the 60°

position with the spoken command “OK Google,
turn servo to sixty.” I observed that the servo

moved from the initial 0° position to the 60°

position as commanded. The conversation

LED also turned on, as expected, indicating

that an ongoing conversation was in progress.

Incidentally, the spoken response was “Sorry, I
don’t know how to help with that yet.” This is the

Google Assistant’s standard phrase generated

when dealing with an abnormal request such

as turning on a servo. You should ignore the

response. There is a way to suppress this warning

response, but it would needlessly complicate the

software without any real benefit.

 'google-oauthlib-tool',
 'credentials.json'
),

 help='Path to store and read OAuth2 credentials')
 args = parser.parse_args()
 with open(args.credentials, 'r') as f:
 credentials = google.oauth2.credentials.Credentials(token=None,
**json.load(f))

 with Assistant(credentials,"My Google Home device") as assistant:
 for event in assistant.start():
process_event(event)

if __name__ == '__main__':
main()

03_Ch03.indd 73 2/1/19 1:44 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

74 Home Automation with Raspberry Pi

This mirrored in many respects the Chapter

1 presentation. The important authentication

process was covered in fine detail.

I next presented a Python script that would

run the Google Assistant software to cause the

RasPi to emulate a Google Home device. A test

was then conducted that proved that the RasPi

did function properly as a Google Home device.

The following discussion included a

demonstration of how to extend the default

functions for the RasPi Google Home emulator.

The test included controlling a LED and an AC

lamp, similar to what was done in Chapter 2.

Finally, I presented an approach for device

control that went well beyond the simple on/off

controls demonstrated so far. This test showed

how to control a servo motor, similar to one that

might be used with a remote-controlled webcam.

choice of which approach to use is totally up to

you and relies on the specific HA application

and how best to meet all system requirements.

Summary
This chapter’s intent was to demonstrate how to

design and build a RasPi emulator of a Google

Home device. This design used only the RasPi

with the addition of a USB microphone and

USB speaker for speech detection and audio

response.

I initially showed you how to set up the RasPi

for proper audio operations that would support

the design. A Python 3 installation including

Google Assistant software was next introduced,

including how to run a virtual Python

environment.

The installation and configuration of a

Google Cloud project was discussed next.

03_Ch03.indd 74 2/1/19 1:44 PM

C H A P T E R 4

Raspberry Pi GPIO Control
with an Amazon Echo

75

IN THIS CHAPTER, I WILL demonstrate how

to control some RasPi GPIO pins using an

Amazon Echo personal voice assistant. This is

similar to what was demonstrated in Chapter

2, except that in Chapter 2 I used the Google

Home device. There is a significant difference

between the approach used by Amazon and

that by Google for connecting to voice assistant

devices. I will explain the Amazon approach and

point out some pros and cons of the Amazon

and Google methods.

Wemo Demonstration
It would be informative and helpful to first

demonstrate how the Amazon Echo connects

with a commercial smart home device. This

demonstration uses a Belkin-manufactured

Wemo device that is directly controlled by an

Echo unit. This demonstration uses a Wemo

mini WiFi Smart miniplug, which is shown in

Figure 4-1.

This device must first be set up using a

smartphone app called the Wemo app. I used an

iOS smartphone for app installation. Figure 4-2

shows the smartphone Wemo app screen.

The Echo device also must be linked to the

Wemo device using this spoken command:

“Alexa, discover devices.” It typically takes an

Echo device about 45 seconds to complete the

discovery process. I had previously plugged an

AC table lamp into the Wemo device in order to

have an easy way to determine when the Wemo

device was activated. I did see the table lamp

turn on when I spoke this command: “Alexa, turn
on the Wemo.”

The Wemo device may also be controlled

directly from the Wemo app simply by tapping

Parts List

Item Model Quantity Source

RasPi 3 B or B+ 1 adafruit.com
amazon.com
mcmelectronics.com

Smart plug Belkin Wemo miniplug 1 amazon.com

Echo device Any Alexa unit such as
Basic, Spot, Show, or Tap

1 amazon.com

Power Switch Tail II 1 amazon.com

AC table lamp Commodity 1 Home improvement store

04_Ch04.indd 75 2/1/19 1:48 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

76 Home Automation with Raspberry Pi

The Alexa Skills Kit (ASK) is a collection

of APIs, utilities, documentation, and code

samples that allow developers to fairly easily

create and test new skills. Developers using ASK

can take advantage of a powerful infrastructure

in designing and building high-quality skills

capable of being run on tens of millions of

Alexa-enabled devices. ASK is Amazon’s answer

to Google’s Voice Assistant API and Cloud

Platform infrastructure. I will not comment

on which is better or worse but will simply say

that I am presenting both in this book for your

information and use as you see fit.

There some basic components that make up

an Alexa skill you should know about. These are

shown in the custom Alexa Skill design screen in

Figure 4-3.

on the On/Off button icon. Turning off the

lamp with the Wemo was done using this

command: “Alexa, turn off the Wemo.” The lamp

turned off after the command was spoken.

These actions confirmed that the Echo unit was

properly controlling the Wemo device through

my local WiFi network. This was an important

confirmation that directly leads into how the

Echo device can control the GPIO pins on a

RasPi. But first I need to introduce the Alexa

Skill before describing how to control GPIO pins

with an Echo device.

Alexa Skill

Alexa is the name of Amazon’s voice service,

just as Google Assistant is the name of Google’s

voice service. Alexa is also the alert name that

activates voice service for an Echo unit, as I

specified in the preceding spoken-command

examples. Alexa provides certain functionalities,

or skills, as they are preferably called in the

voice service. Thousands of skills are presently

available, with many provided by companies that

manufacture devices for the Echo line of devices

or provide complementary services that are

integrated with overall Amazon services. Some

examples of the latter include Starbucks, Uber,

and Capitol One.

 Wemo smart miniplug.Figure 4-1

 Wemo app screenshot.Figure 4-2

04_Ch04.indd 76 2/1/19 1:48 PM

Chapter 4 n Raspberry Pi GPIO Control with an Amazon Echo 77

utterance that follows. The intent is specified by

the phrase turn on, and the slot is Wemo, which

is the intent’s object. The intent and object are

then transmitted to an Amazon server, which

has previously been configured to recognize

the Wemo object as well as various intents that

could be applied to the object. If you try to

apply an intent that was not previously set up,

the Alexa service will respond, “Sorry, I am not
sure” or “Sorry, I don’t know that one” or some

similar response phrase indicating that Alexa has

no concept of the spoken intent.

Amazon has made available thousands of

prebuilt skills for your immediate use. These

skills come mainly from original equipment

manufacturers (OEMs) and service providers

The key skill components are

■n Utterance: Any spoken phrase

■n Invocation: A spoken phrase that starts an

action (An action is also known as an intent

in the ASK framework.)

■n Slot: The objects of the intent, that is, what

you want to do

■n Interaction model: The collection of

utterances, invocations, and slots that make

up a conversation between a user and an

Echo device

The spoken command “Alexa, turn on
the Wemo” is an utterance that begins a

conversation. The word Alexa is the default alert

word to an Echo device, arming it to process the

 Custom Alexa Skill design screen.Figure 4-3

04_Ch04.indd 77 2/1/19 1:48 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

78 Home Automation with Raspberry Pi

github.com/n8henrie/fauxmo/, where n8henrie

is Nathan’s user name on Github. However, do

not directly download this skill from the Github

website because I will demonstrate an easier way

to get it in the next section.

Fauxmo

I begin this section by stating that most of the

instructions that follow came from an April

2017 Instructables blog, “Control Raspberry Pi

GPIO Using Amazon Echo (Fauxmo),” written

by Surendra Kane. I found the blog quite useful,

although I did have to slightly modify some of

the procedures to suit my situation. You will also

find if you read the blog that Surendra actually

modeled his blog after an earlier one dealing

with the same subject. This is what is so great

about open-source development: the tremendous

support that is so readily available.

You first need to download a copy of the

Fauxmo source code from Surendra’s Github

website using the following commands:

cd~

sudogitclonehttps://github.com/

kanesurendra/echo-pi.git

Next, move to the directory holding the Python

script, and execute it with these commands:

cdecho-pi

pythongpio_control.py

Now you can try asking your Echo device to

discover any new devices by using this spoken

command: “Alexa, discover devices.”

The Echo device should provide a lengthy

response starting with “Starting discovery. This

will take 45 seconds....”

I found that this approach did not discover

the RasPi. I next tried using the Alexa app on

my smartphone and manually began a device

discovery in the app’s Smart Home devices

that use Echo devices. The following is a

list of the skills categories that I extracted

from https://www.amazon.com/alexa-skills/

b?ie=UTF8&node=13727921011 website:

■n Business and finance

■n Communications

■n Connected cars

■n Education and reference

■n Food and drink

■n Games, trivia, and accessories

■n Health and fitness

■n Home services

■n Kids

■n Lifestyle

■n Local

■n Movies and TV

■n Music and audio

■n News

■n Novelty and humor

■n Productivity

■n Shopping

■n Smart home

■n Social

■n Sports

■n Travel and transportation

■n Utilities

■n Weather

However, no prebuilt skill is available for the

Raspberry Pi in any of these categories. There is

the Wemo skill provided by Belkin in the Smart

Home category that I just demonstrated, and a

clever developer named Nathan Henrie modified

it so that the skill directly controls RasPi GPIO

pins. He renamed the skill Fauxmo, which is

a clever way of stating that the skill is a false,

or faux, version of the original Wemo skill.

The skill is directly downloadable from https://

04_Ch04.indd 78 2/1/19 1:48 PM

Chapter 4 n Raspberry Pi GPIO Control with an Amazon Echo 79

section. This approach was successful, with 12

new devices labeled “gpio15” through “gpio26”

appearing in the app’s screen, as shown in Figure

4-4.

I could now individually control the GPIO

pins using the app or by speaking commands

such as “Alexa, turn on gpio 22” and “Alexa, turn
off pio 22.” The next step in the demonstration

involves connecting external peripherals to some

GPIO pins for a proof of performance, as was

done in previous chapters.

Test Setup

The test peripherals consist of a LED and an

AC lamp, which are controlled by a PST2.

Figure 4-5 is a Fritzing diagram showing how

they are connected to the GPIO pins.

GPIO pin 22 controls the LED, and GPIO

pin 24 controls a PST2, which, in turn, controls

an AC table lamp.

 Alexa app with new GPIO devices.Figure 4-4

 Test setup Fritzing diagram.Figure 4-5

04_Ch04.indd 79 2/1/19 1:48 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

80 Home Automation with Raspberry Pi

pin. Attempting to give some other action to a

GPIO pin will only result in the usual “Sorry, I am
not sure” or “Sorry, I don’t know that one” Alexa

responses. Figure 4-6 is a screenshot of the

logger output instantiated by the control script.

You can see at the beginning of the log screen

all the Fauxmo virtual devices being registered

with attached port numbers. I will describe what

these port numbers mean in a later section.

The last few lines of log output show where I

controlled first the LED attached to GPIO 22

and then the AC lamp (PST2), which is attached

to GPIO 24. Note that the phrases State True

and State False refer to the requested control

action of “turn on” and “turn off,” respectively.

Test Run

These next spoken commands successfully

controlled the LED:

“Alexa, turn on gpio 22.”

“Alexa, turn off pio 22.”

Similarly, the following spoken commands

successfully controlled the table lamp:

“Alexa, turn on gpio 24.”

“Alexa, turn off pio 24.”

These commands are binary, meaning that the

pin state is either on or off. This is because that

is the only intent setup for any specific GPIO

 Log screen for Fauxmo server and control script.Figure 4-6

04_Ch04.indd 80 2/1/19 1:48 PM

Chapter 4 n Raspberry Pi GPIO Control with an Amazon Echo 81

functions. Knowing more about it will likely

allow you to further experiment and develop

solutions more tailored to your specific needs.

Python Control Script

I think that it is informative to present the

Python control script and discuss how it

"""

Author:SurendraKane

ScripttocontrolindividualRaspberryPiGPIO's.

ApplicableONLYforRaspberryPI3,basedonschematics.

PleasemodifyforotherboardversionstocontrolcorrectGPIO's.

"""

importfauxmo

importlogging

importtime

importRPi.GPIOasGPIO

fromdebounce_handlerimportdebounce_handler

logging.basicConfig(level=logging.DEBUG)

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

gpio_ports = {'gpio1':1,'gpio2':2,'gpio3':3,'gpio4':4,'gpio5':5,'gpio6':6,'gpio7':7,
'gpio8':8,'gpio9':9,'gpio10':10,'gpio11':11,'gpio12':12,'gpio13':13,'gpio14':14,
'gpio15':15,'gpio16':16,'gpio17':17,'gpio18':18,'gpio19':19,'gpio20':20,'gpio21':21,
'gpio22':22,'gpio23':23,'gpio24':24,'gpio25':25,'gpio26':26}

class device_handler(debounce_handler):
 """Triggers on/off based on GPIO 'device' selected.
 Publishes the IP address of the Echo making the request.
"""

"""

 TRIGGERS = {"gpio1":50001,
 "gpio2":50002,
 "gpio3":50003,
 "gpio4":50004,
 "gpio5":50005,
 "gpio6":50006,
 "gpio7":50007,
 "gpio8":50008,
 "gpio9":50009,
 "gpio10":50010,
 "gpio11":50011,
 "gpio12":50012,
 "gpio13":50013,
 "gpio14":50014,
"""

 TRIGGERS = {"gpio15":50015,

04_Ch04.indd 81 2/1/19 1:48 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

82 Home Automation with Raspberry Pi

 "gpio16":50016,
 "gpio17":50017,
 "gpio18":50018,
 "gpio19":50019,
 "gpio20":50020,
 "gpio21":50021,
 "gpio22":50022,
 "gpio23":50023,
 "gpio24":50024,
 "gpio25":50025,
 "gpio26":50026}

 def trigger(self,port,state):
 print('port: %d , state: %s', port, state)
 if state == True:
 GPIO.setup(port, GPIO.OUT)
 GPIO.output(port,GPIO.HIGH)
else:

 GPIO.setup(port, GPIO.OUT)
 GPIO.output(port,GPIO.LOW)

 def act(self, client_address, state, name):
print"State",state,"on",name,"fromclient@",client_address,

 "gpio port: ",gpio_ports[str(name)]
 self.trigger(gpio_ports[str(name)],state)
returnTrue

if __name__ == "__main__":
#Startupthefauxmoserver

 fauxmo.DEBUG = True
 p = fauxmo.poller()
 u = fauxmo.upnp_broadcast_responder()
 u.init_socket()
 p.add(u)

#Registerthedevicecallbackasafauxmohandler

 d = device_handler()
 for trig, port in d.TRIGGERS.items():
 fauxmo.fauxmo(trig, u, p, None, port, d)

 # Loop and poll for incoming Echo requests
 logging.debug("Entering fauxmo polling loop")
whileTrue:

try:

#Allowtimeforactrl-ctostoptheprocess

 p.poll(100)
 time.sleep(0.1)
 except Exception, e:
 logging.critical("Critical exception: " + str(e))
break

04_Ch04.indd 82 2/1/19 1:48 PM

Chapter 4 n Raspberry Pi GPIO Control with an Amazon Echo 83

Play and was created to allow network devices to

seamlessly interconnect with one another. These

devices ordinarily include such things as PCs,

printers, Internet gateways, WiFi access points,

routers, and mobile devices. Additionally, the

UPnP Protocol allows for the easy sharing of

data among connected devices. UPnP uses the

Internet Protocol (IP) as its backbone and also

takes advantage of HTTP, SOAP, and XML

technologies. Generally speaking, UPnP is best

suited for consumer applications such as HA

and is often avoided for use in business systems.

This is because the protocol uses multicasting,

which makes it “too chatty” for deployment in

business or enterprise systems.

Figure 4-7 is a sequence diagram depicting

how an Echo device communicates with a

Wemo device using UPnP. I have found these

diagrams to be very useful in explaining complex

data communications configurations and

interconnections.

Don’t be scared if you find this figure a

bit intimidating. It is basically just a timeline

showing requests and responses between the

Echo and Wemo units. The thing you should

note that the same interaction is always

happening between the units. I will shortly show

you a figure with some actual data illustrating

these requests/responses happening in real time

between an Echo device and a RasPi. But first I

want to continue with the Fauxmo story.

The Fauxmo software is an emulation of

the original Wemo server software. The devices

controlled in this emulation are known as

virtual Wemo devices because they will respond

as if they were physical Wemo devices but are

something completely different, such as RasPi

GPIO pins.

The first thing you should notice is that this

version of the script has activated only GPIO

pins 15 through 26 as part of a TRIGGER array.

I did read in the Fauxmo documentation that

problems were encountered when too many

GPIO pins were activated at a single time.

This script allows you to activate GPIO pins 1

through 14 or 15 through 26 at any given time.

You do that by uncommenting the desired

TRIGGER array. Just ensure that the unwanted

portion of the GPIO pins is also commented

out.

Each GPIO pin has a unique port number

that is assigned values contained in the active

TRIGGER array. That port number, not the actual

GPIO pin number, is what is sent to the Fauxmo

server.

The Fauxmo server is the key software

component that makes this whole project

viable. A brief discussion regarding the Fauxmo

server along with the underlying software

communications protocol follows. You may skip

reading the next section without any loss of

continuity.

Fauxmo Server

I will like to first give credit to Chris, who

publishes the Maker Musings blog. Apparently

Chris is the open-source developer who created

Fauxmo. The blog I am referencing is entitled,

“Amazon Echo and Home Automation,” and

was published on July 13, 2015.

The Alexa service has had a Wemo skill for

a relatively long time as compared with more

recent HA skills. This skill was based on a WiFi-

enabled AC mains power switch such as the

one shown in Figure 4-1. Wemo devices use the

UPnP communications protocol to “advertise”

their availability in a local network. The UPnP

Protocol is formally known as Universal Plug and

04_Ch04.indd 83 2/1/19 1:48 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

84 Home Automation with Raspberry Pi

many informative comments are also included

with the discussion.

Surendra’s control script imports the Fauxmo

server package and sets up a polling service

that constantly monitors the local network for

any service requests emanating from a virtual

Wemo device. The Python control script may be

thought of as a wrapper to the Fauxmo software

such that RasPi GPIO pins can be configured as

virtual Wemo devices. Using this approach makes

it quite easy to extend to other devices as desired.

Creating an Alexa Skill
from Scratch
Up to this point in this chapter’s discussions,

I have relied on using an existing skill created

by Belkin to communicate with Belkin-

manufactured Wemo devices. This works and

is quite useful to quickly implement a scheme

I am not going to discuss the complex

functions of the Fauxmo server software other

than to list them as they were provided in Chris’s

blog:

1. An IP address for each virtual switch

2. A listener for UDP broadcasts to address

239.255.255.250 on port 1900

3. A listener on port 49153 for each switch on

its associated IP address

4. Logic to customize the search response

and the setup.xml to conform to the UPnP

Protocol and give the Echo the right

information about each switch

5. Logic to respond to the on and off

commands sent by the Echo and tie them to

whatever action I really want to perform

Please read the blog if you want to delve deeper

into the implementation details. The blog

discussion is quite extensive and detailed, and

User Amazon Echo Wemo Switch

“Alexa, discover devices.”

“Alexa, turn on the den light.”

“OK.”

Echo starts search for Wemo devices.

Wemo responds with its URL.

Echo requests device description.

Wemo returns device description.

Echo send SetBinaryState command.

Wemo returns conÿrmtion.

UPnP multi-cast over UDP
Search for Belkin devices

HTTP over TCP
GET/setup.xml

HTTP over UDP
http://<ip>:49153/setup.xml

HTTP with SOAP over TCP
POST/upnp/control/basicevent1

HTTP response

HTTP SOAP response

 Echo/Wemo sequence diagram.Figure 4-7

04_Ch04.indd 84 2/1/19 1:48 PM

Chapter 4 n Raspberry Pi GPIO Control with an Amazon Echo 85

written in Python that essentially supports Web-

based applications. In fact, it is the most popular

Python Web-development framework among

open-source developers. I do not have the space

in this book to delve into Flask but will state

that many Internet tutorials are available, as well

as several books completely devoted to Flask

development.

You will first need to install the Flask-ASK

package on the RasPi. As a gentle reminder,

ensure that the RasPi OS has been updated and

upgraded, as I have discussed previously in the

book. Enter the following command to install

Flask-ASK:

sudo pip install flask-ask

This command will take about a minute or so

using a RasPi 3 (likely longer with a Model

2). After the package has been installed,

open a nano editor and enter the following

Python script. It is named memory_game.py

and is also available for download from this

book’s website, www.mhprofessional.com/

NorrisHomeAutomation.

to control GPIO pins on a RasPi. However,

it would also be very useful to know how to

design your own skill in case you want to

communicate with a device that cannot emulate

Wemo functionalities. This is why I will provide

a detailed discussion on how to design and build

an Alexa skill. This learning skill will involve a

RasPi but not any GPIO pins. The skill itself

is centered on the design of a simple memory

game. The important point to note is that the

skill-development process will be the same when

designing for an HA application as it would be

for implementing a simple game.

Memory Game Skill

The memory game skill I will be describing was

created by John Wheeler, who also created the

Flask-ASK package, which is a Flask extension

that facilitates designing voice interfaces with

the ASK. The memory game is a very simple

application in which the Alexa asks you to

repeat in reverse order three numbers that it

spoke earlier. The application is implemented

using Python script and runs on a RasPi. It uses

the Flask package, which is a microframework

importlogging

fromrandomimportrandint

from flask import Flask, render_template
from flask_ask import Ask, statement, question, session

app = Flask(__name__)
ask = Ask(app, "/")
logging.getLogger("flask_ask").setLevel(logging.DEBUG)
@ask.launch

def new_game():
 welcome_msg = render_template('welcome')
 return question(welcome_msg)
@ask.intent("YesIntent")

def next_round():
 numbers = [randint(0, 9) for _ in range(3)]
 round_msg = render_template('round', numbers=numbers)
 session.attributes['numbers'] = numbers[::-1] # reverse
 return question(round_msg)

04_Ch04.indd 85 2/1/19 1:48 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

86 Home Automation with Raspberry Pi

ngrok

ngrok is a utility that will open a secure tunnel

to the local host, allowing the Alexa service to

communicate directly with the RasPi. A secure

tunnel is just an https URL that points to the

internal Web server set up by Flask. There is no

public host name, and you do not need to open

any firewall protections. It is exactly what is

needed for the skills deployment on a RasPi.

You will need to install ngrok, which is done

by going to the website ngrok.com and following

the simple set of instructions posted there. You

can execute ngrok once it is installed by entering

the following command:

./ngrok http 5000

You should see a screen similar to the one shown

in Figure 4-8 after you execute the command.

The key bit of information that you eventually

need is the https URL. The one shown in the

figure is https://11941605.ngok.io and is also

called an endpoint. Yours will be different. In

fact, whatever URL is shown will not be used in

the actual connection until you are ready to run

the game. The URL created changes each time

you start ngrok, and that particular URL must

be the one entered into the skill prior to use.

The next section discusses how to configure the

Memory Game skill.

Flask-ASK also permits the separation of

executable code from speech using templates.

Therefore, you will need to start another nano

editor session and enter the following speech

responses into a file named templates.yaml. It,

too, is available from this book’s website.

welcome: Welcome to memory game. I'm going
tosaythreenumbersforyoutorepeat

backwards.Ready?

round:Canyourepeatthenumbers

 {{ numbers|join(", ") }} backwards?

win: Good job!

lose:Sorry,that'sthewronganswer.

The templates.yaml file must be located in the

same directory as the memory_game.py script. I

will assume that you will likely put them both in

the Home directory.

If you run the script at this point, you will see

that it starts a server on http://127.0.0.1:5000,

which is the local host at port 5000.

Unfortunately, the Alexa service has no way to

directly access the local host, and the application

cannot run successfully. Fortunately, there is a

unique and clever answer to this problem, and its

name is ngrok.

@ask.intent("AnswerIntent", convert={'first': int, 'second': int, 'third': int})

def answer(first, second, third):
 winning_numbers = session.attributes['numbers']
 if [first, second, third] == winning_numbers:
 msg = render_template('win')
else:

 msg = render_template('lose')
 return statement(msg)

if __name__ == '__main__':
 app.run(debug=True

04_Ch04.indd 86 2/1/19 1:48 PM

Chapter 4 n Raspberry Pi GPIO Control with an Amazon Echo 87

to your list of Amazon skills. Of course, it will

be empty if this is the first skill you are creating.

The following steps must be closely followed

in the order presented or you will likely not be

successful in creating the skill.

1. Click on the Create Skill button. The screen

shown in Figure 4-9 should appear.

2. Leave the Skill Type set on the Custom

Interaction Model.

Building and Configuring

the Memory Game Skill

You will need to log onto your Amazon

developer account to start the process of

building an Alexa skill. Go to https://developer

.amazon.com, and either login or create a

new account by clicking on the appropriate

button. It is fast, free, and absolutely required

to proceed with this project. Once logged in, go

 ngrok status screen.Figure 4-8

 Initial screen for skill creation.Figure 4-9

04_Ch04.indd 87 2/1/19 1:48 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

88 Home Automation with Raspberry Pi

so you can replace the entire existing

Editor window contents with this file.

This file is also available on this book’s

website, www.mhprofessional.com/

NorrisHomeAutomation, with the name

memory_game.json.

3. Enter “Memory Game“ (without quotes)

for both the Name and Invocation Name

textboxes.

4. Copy the JSON file shown into the JSON

editor window. There will already be four

standard, prebuilt intents in the Editor

window. The listed file includes these,

{
 "interactionModel": {
 "languageModel": {
"invocationName":"memorygame",

"intents":[

 {
"name":"YesIntent",

 "slots": [],
"samples":[

"yes"

]
 },
 {
"name":"AnswerIntent",

"slots":[

 {
 "name": "first",
 "type": "AMAZON.NUMBER"
 },
 {
"name":"second",

 "type": "AMAZON.NUMBER"
 },
 {
"name":"third",

 "type": "AMAZON.NUMBER"
 }
],
"samples":[

 "{first} {second} {third}"
]
 },
 {
 "name": "AMAZON.FallbackIntent",
 "samples": []
 },
 {
 "name": "AMAZON.CancelIntent",
 "samples": []
 },
 {
 "name": "AMAZON.HelpIntent",
 "samples": []
 },

04_Ch04.indd 88 2/1/19 1:48 PM

Chapter 4 n Raspberry Pi GPIO Control with an Amazon Echo 89

The skill is ready for testing once it has been

built and saved.

Test Run

Open another terminal window, and enter this

command:

sudopythonmemory_game.py

This will start the Python script that was loaded

earlier with a Web server running as local host

at port 5000. However, the ngrok utility is still

running and will have established a virtual

tunnel between the Alexa service and the local

host Web server. This is why it is so important

to enter the current https URL created when

you started the ngrok utility. Figure 4-10 shows

a ngrok screen as it was running with a Memory

Game session.

5. Copy the following utterances into the

Sample Utterances field:

YesIntentyes

YesIntentsure

AnswerIntent {first} {second} {third}
AnswerIntent {first} {second} and {third}

6. Next, run the ngrok utility and copy the

https URL into the Endpoint field. Do not

close the ngrok utility because the Alexa skill

must use the URL Endpoint just generated.

7. Select the second radio button in the

SSL Certificate settings. It states, “My

development endpoint is a subdomain of a

domain that has a wildcard certificate from a

certificate authority.”

8. Finally, you must build the interaction model

by clicking on the Build button in the Alexa

Skill console website. This will take a bit of

time, so be patient.

 {
 "name": "AMAZON.StopIntent",
 "samples": []
 }
],
 "types": []
 }
 }

 ngrok session in progress.Figure 4-10

04_Ch04.indd 89 2/1/19 1:48 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

90 Home Automation with Raspberry Pi

you can see captured in the communications log

shown in Figure 4-11.

Much of the incomprehensible text I believe is

related to establishing and maintaining a secure

tunnel between the Alexa service and the RasPi’s

local host Web server. In any case, if you do

not see this data flow, then it likely means that

a secure tunnel has not been created, and the

Memory Game cannot work.

You deserve congratulations if you have

successfully completed this demonstration.

Creating an Alexa skill is moderately difficult,

especially one that is implemented using a

RasPi. The next demonstration takes the

preceding demonstration one step further, where

you will create a skill that will control any RasPi

GPIO pin.

Now speak the following command to the

Echo device: “Alexa, start the memory game.” If all

goes well, the response, should be “Welcome to
the memory game. I’m going to say three numbers
for you to repeat backwards. Ready?” Your

response should be “Yes.”

Alexa will then state three random numbers

each between 0 and 9. You should repeat them

back in reverse order. If you are successful,

Alexa will respond, “Good job!” If unsuccessful,

the response is “Sorry, that’s the wrong answer.”
You may always change the Alexa responses

by modifying the templates.yaml file (which

contains the utterances).

There is an incredible amount of data flowing

between the Alexa service and the RasPi, which

 Communications log between the Alexa service and the RasPi.Figure 4-11

04_Ch04.indd 90 2/1/19 1:48 PM

Chapter 4 n Raspberry Pi GPIO Control with an Amazon Echo 91

from flask import Flask
from flask_ask import Ask, statement, convert_errors
importRPi.GPIOasGPIO

importlogging

GPIO.setmode(GPIO.BCM)

app = Flask(__name__)
ask = Ask(app, '/')

logging.getLogger("flask_ask").setLevel(logging.DEBUG)

@ask.intent('GPIOControlIntent', mapping={'status': 'status', 'pin': 'pin'})
def gpio_control(status, pin):

try:

 pinNum = int(pin)
 except Exception as e:
 return statement('Pin number not valid.')

 GPIO.setup(pinNum, GPIO.OUT)

 if status in ['on', 'high']: GPIO.output(pinNum, GPIO.HIGH)
 if status in ['off', 'low']: GPIO.output(pinNum, GPIO.LOW)

 return statement('Turning pin {} {}'.format(pin, status))

if __name__ == '__main__':
 main()

Building and Configuring the
RasPi GPIO Pin Control Skill
In this demonstration, you will be building a

skill that will be able to turn on or off any RasPi

GPIO pin. For convenience, I will be using the

exact same physical setup shown in Figure 4-5,

where GPIO pin 22 controlled a LED and GPIO

pin 24 controlled an AC lamp using a PST2.

However, the skill is equally applicable to any

available GPIO pin.

Python Control Script

Open a nano editor, and enter the following

Python script. It is named gpio_control.py and

is also available for download from this book’s

website.

04_Ch04.indd 91 2/1/19 1:48 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

92 Home Automation with Raspberry Pi

{
 "interactionModel": {
 "languageModel": {
"invocationName":"controlpin",

"intents":[

 {
"name":"GPIOControlIntent",

"slots":[

 {
"name":"status",

"type":"GPIO_CONTROL"

 },
 {
"name":"pin",

 "type": "AMAZON.NUMBER"
 }
],
"samples":[

 "off",
"on"

]
 },
 {
 "name": "AMAZON.FallbackIntent",
 "samples": []
 },
 {
 "name": "AMAZON.CancelIntent",
 "samples": []
 },
 {
 "name": "AMAZON.HelpIntent",
 "samples": []
 },

Building the Alexa Skill

The same procedure detailed in the preceding

Alexa skill-development discussion must be

followed. I will not repeat all the steps except to

detail the changes and modifications necessary

for this particular skill build.

You need to name the skill after you click

on the Create Skill button. I used the name

Raspberry Pi Control, but you can name it

anything you like.

The next item is to enter an invocation phrase.

I used the phrase pin control because I felt that

it would be natural and easy to say the phrase

“Alexa, turn on pin control 22” to turn on GPIO

pin 22.

Copy the JSON file shown into the JSON

editor window. There will already be four

standard prebuilt intents in the editor window.

The listed file includes these, so you can replace

the entire existing editor window contents with

this file. This file is also available on this book’s

website with the name raspicontrolintent.json.

04_Ch04.indd 92 2/1/19 1:48 PM

Chapter 4 n Raspberry Pi GPIO Control with an Amazon Echo 93

At this point, speak the following phrase: “Alexa,
turn on pin control 22.” You should now see the

LED light up and hear the Alexa response:

“Turning pin 22 on.” Similarly, you can turn off

the LED and turn the AC lamp on and off with

the appropriate phrases.

This last demonstration should convince you

that it is entirely possible to create an Alexa

skill to control RasPi GPIO pins. I will say that

having to set a URL prior to using the skill is a

severe limitation that probably would exclude

this approach for commercial HA applications.

By contrast, using the Fauxmo approach, as was

done in this chapter’s second demonstration,

is likely acceptable for a commercial HA

application or your own efficient project.

At this point, you can save the skill and build it

to check that it is viable, but you cannot deploy

it until you set the Endpoint URL, as noted

earlier.

Run ngrok, get the https URL, and enter it

into the skill’s Endpoint textbox. Also, ensure

that you preset the proper SSL certificate, as

discussed earlier. Now save and rebuild.

Test Run

The test run for this demonstration is run

in exactly the same manner as the previous

demonstration. Ensure that ngrok is still

running, and then open another terminal

window and run the Python control script using

this command:

sudopythongpio_control.py

 {
 "name": "AMAZON.StopIntent",
 "samples": []
 }
],
"types":[

 {
"name":"GPIO_CONTROL",

"values":[

 {
 "name": {
 "value": "off"
 }
 },
 {
 "name": {
"value":"on"

 }
 }
]
 }
]
 }
 }
}

04_Ch04.indd 93 2/1/19 1:48 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

94 Home Automation with Raspberry Pi

a RasPi to act as if it were a Wemo device. I

provided a demonstration in which a LED

and an AC lamp connected via a PST2 were

controlled by the RasPi using spoken commands

to an Echo device.

The ngrok utility was introduced, which

makes possible the creation of a secure tunnel

between the Alexa service and the RasPi Web

server that is running as a local host. This utility

was required for the follow-on demonstration.

A detailed discussion of how to create an

Alexa skill from scratch followed. This skill

involved building a simple Memory Game that

was hosted on a RasPi. A user would start a

conversation with an Echo device to run the

game. This demonstration detailed all the

necessary steps to build an Alexa skill.

Finally, another skill was built that directly

controlled RasPi GPIO pins, which in truth

controlled both the LED and AC lamp.

NOTE: Chapter 5 was intended to be about how to
build an Echo using only the RasPi in much the same
way I wrote this chapter for the Google Home device.
Unfortunately, after much development and trial and
error, I was unable to build such a device. I do not know
what to attribute the failure to except think that the
Alexa voice service does not seem to be as accepting of
open-source development as is Google’s voice service.
Hopefully, this will change in the future because voice
services are very dynamic.

Summary
The chapter began with a demonstration of how

to control a Wemo miniplug HA device using

a smartphone app. I did this in preparation for

introducing how the Amazon Alexa service

functions and how to build a skill that could

connect that service with a RasPi.

A short discussion regarding the Fauxmo

server software followed. This software is an

emulation of the Wemo software, which allows

04_Ch04.indd 94 2/1/19 1:48 PM

C H A P T E R 5

Home Automation
Operating Systems

95

THIS CHAPTER EXPLORES the subject of home

automation operating systems (HA OSs). It

probably seems strange to you to even know that

there is such a thing as an HA OS. Most readers

are aware of a computer OS, such as Windows

10 for PCs, OSX for Macs, and Linux for the

open-source community. The most common and

popular OS for the RasPi is Raspbian, which is

a distribution within the Debian Linux family.

It would be helpful to describe what a computer

OS does before attempting to describe the

purpose and function of an HA OS.

Computer Operating Systems
The Wikipedia definition of an OS system is as

follows:

An operating system (OS) is system

software that manages computer hardware

and software resources and provides

common services for computer programs.

This definition is fairly accurate and is

quite similar to those found in computer

OS textbooks. I believe that the single most

important item to know about an OS is that in

itself it is just a program. Admittedly, it is a very

large and complex program, but it is nonetheless

just a program or, more specifically, a systems-

level application. The OS loads automatically

when the computer is powered on and eventually

displays a friendly graphical user interface

(GUI), which allows the user to easily control

the whole system. It would be impossible for the

average user to interact with a modern computer

system without an OS functioning between the

user and the hardware and software.

I am not going to delve into any OS specifics

here because it is really not necessary for this

section, and besides, it ordinarily requires taking

Parts List

Item Model Quantity Source

RasPi 3 B 1 adafruit.com
amazon.com
mcmelectronics.com

Smart plug Belkin Wemo miniplug 1 amazon.com

Smart lamp kit (includes bridge) Philips Hue, white 1 amazon.com

Power Switch Tail II 1 amazon.com

05_Ch05.indd 95 2/1/19 1:49 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

96 Home Automation with Raspberry Pi

tasks implemented in software normally include

on/off and timed operations and notifying users

when events happen. These events are usually

triggered by sensors detecting an abnormal

situation such as an unauthorized person in the

home or a rapid ambient temperature change,

which may be a precursor to an imminent fire.

HA software is often designed to work with

multiple interfaces to the external environment,

including relay closures, e-mail portals, and

Extensible Messaging and Presence Protocol

(XMPP), Z-Wave Protocol, and X10 Protocol

products. The software structure is often a client-

server architecture using a Web-based GUI or a

mobile smartphone app. The ability to automate

tasks is also built in using custom scripts and

similar configuration files and utilities.

Huge concerns for HA device manufacturers

and consumers are privacy and security. No one

wants cyber intruders to enter private homes

and business establishments. Determining who

has access to vital systems that control home

and business systems, which often record every

moment and movement of users’ lives, is of

paramount importance. Users need strong

assurances that automated devices are only

communicating as designed and permitted and

are never communicating or disclosing private

information or data to unauthorized persons or

organizations.

These security concerns are ample reason to

use open-source solutions for HA applications.

Understanding how an HA program functions is

critical to ensuring that it is secure and will not

expose you to all the threats that are ever-present

whenever you are connected to the Internet.

Unfortunately, some of the HA programs

used with modern appliances and systems are

proprietary and offer little to no understanding

of how they are secured and how they can

protect you from cyber threats.

a one-semester college course to gain a good

understanding of how a modern OS functions.

The key point to understand about an OS is that

it abstracts computer hardware and software to

a point where relatively unsophisticated users

can easily use a computer system to achieve

their goals and objectives. These goals can be

as simple as sending and receiving e-mail, using

business applications, participating in social

networks, and browsing the Internet. Likely 80

to 90 percent of all users match this description.

The remaining portion of users is more

knowledgeable and can develop applications as

well as customize a computer system to meet

their specific needs.

A modern OS has a lot of “moving parts”

that are necessary for it to meet its goal of

controlling a computer system based solely on

mouse clicks on icons and small amounts of text

input into browsers or dialog textboxes. This

approach refers to the abstraction I mentioned

earlier. Modern systems would be totally beyond

most people’s skills and patience without

this abstraction layer present. It is not an

understatement to say that the OS is responsible

for today’s computer revolution. Having an HA

OS is similarly important for establishing and

maintaining an HA revolution.

Home Automation
Operating Systems
HA software is generally considered to be any

type of software that is dedicated to controlling,

configuring, or otherwise automating existing

items and systems located in modern homes.

These items and systems usually include large

appliances such as stoves and refrigerators as

well as small appliances such as coffee makers,

media, and toasters. Home systems often include

heating, ventilation, and air-conditioning

(HVAC), irrigation, and lighting systems. The

05_Ch05.indd 96 2/1/19 1:49 PM

Chapter 5 n Home Automation Operating Systems 97

Domoticz

This HA system supports a wide range of

devices, including uncommon devices such as

weather stations and smoke detectors. Domoticz

easily incorporates new communication

protocols, which allows it to quickly integrate

new devices into its hub. This capability is

referred to as a third-party plug-in and is

explained in great detail on the Domoticz

website (www.domoticz.com). It uses HTML5

to implement its front-end, which makes it easily

accessible using browsers and smartphone apps.

It is of a lightweight design (meaning small

memory footprint) and can be hosted on a RasPi.

It is written in C/C++ and is licensed under

GPL, version 3. The source code is available

from GitHub.

EventGhost

This is more like a utility program than a full-

fledged HA OS. It is a home theater automation

tool that is supported only on Microsoft

Windows PCs. It allows users to control media

PCs and attached hardware by using plug-ins

that, in turn, trigger macros. Custom Python

scripts also may be written to control the PC.

This HA OS is licensed under GPL, version 2,

and its source code is available from GitHub.

Home Assistant

This HA OS is written in Python 3 and can

run on any Linux platform that supports that

language, including the RasPi. It also uses a

Docker container for rapid and trouble-free

deployment. This software easily integrates

with IFTTT (If This, Then That) and Amazon

services, providing for seamless interoperability

with many devices. I will be introducing a

practical demonstration of Home Assistant in

this chapter.

The solution to this issue is to use an open-

source protection layer in the form of a hub

that ties all your devices together and provides

a common user interface. This hub also should

be designed for both security and ease of use

and should be easy to customize to meet specific

installations and requirements. This open-

source hub is what I refer to as an HA OS, and

many choices are currently available that will

interoperate with a RasPi.

Open-Source HA OS Solutions

The following is a list of the most popular HA

OS solutions currently available at the time of

this writing. Of course, this is a very dynamic

and fluid technology, and I am sure that some of

these solutions will have disappeared by the time

you read this. By contrast, new solutions will

have also become available, so it will ultimately

be up to you to research what is available and

choose the solution that best fits your needs and

objectives.

The following HA OS solutions are presented

in alphabetical order, which means that you

should impute no priority or preference based

on their order in the list.

Calaos

This is a full-stack HA platform, which includes

a server, touchscreen interface, Web interface,

and mobile applications supporting both iOS

and Android. It runs on a Linux platform.

Calaos originated in France, so much of the

support forums are in French, but the tutorials

and supporting documentation have been

translated into English.

This HA OS is licensed under GPL, version 3,

and its source code is available from GitHub.

05_Ch05.indd 97 2/1/19 1:49 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

98 Home Automation with Raspberry Pi

MisterHouse

This software uses Perl scripts, which enables

it to run on all platforms, including Windows

PCs, Macs, and Linux machines. It is voice and

speech enabled and can provide many responses

such as the current time and weather, warn of

open doors and windows, announce phone calls,

inform you if your child has been speeding, and

so on.

openHab

The name openHab is short for Open Home

Automation Bus and is probably the best known

HA OS open-source software package used by

HA developers and enthusiasts. This software is

written in Java and will run on all popular OSs

as well as on the RasPi. It supports hundreds

of devices and is well suited to be adapted and

modified to function with new devices because

it is written in Java. openHab also supports

device control using both iOS and Android

apps. The openHab website (www.openhab.org/

docs/concepts/) contains a very comprehensive

introduction to the whole HA concept. I

recommend that you take the time to read it. It

will provide you with an excellent background in

HA, well beyond what I can accomplish in this

chapter.

This HA OS is licensed under the Eclipse

public license, and its source code is available

from GitHub.

OpenNetHome

This software will control lights, security devices,

appliances, and so on. It’s based on Java and

Apache Maven and will operate on Windows,

macOS, and Linux platforms including the

RasPi.

This HA OS is licensed under GPL, version 3,

and its source code is available from GitHub.

Home Assistant is released to the public under

the MIT license, and the source code is available

from GitHub.

ioBroker

This is a JavaScript-based framework that

can control lights, locks, thermostats, media,

webcams, and much more. It will run on any

platform that runs Node.js, which normally

includes Windows, Linux, and macOS platforms.

ioBroker is released to the public under the

MIT license, and the source code is available

from GitHub.

Jeedom

This is a French-based open-source HA platform

that controls lights, locks, media, and much

more. It includes mobile apps for both Android

and iOS. It operates on Linux PCs, which

include the RasPi. The commercial company

behind Jeedom also sells hardware hubs that

provide ready-to-use solutions for setting up

HA.

This HA OS is licensed under GPL, version 2,

and its source code is available from GitHub.

LinuxMCE

This software is a media-based OS that runs

on Linux and claims to interconnect all your

home’s media devices as well as HVAC, security,

and telecommunications devices. It also claims

to have the ability to run video games, which

I suggest is problematic for a true HA OS–

designed application.

It is released under the Pluto open-source

license.

05_Ch05.indd 98 2/1/19 1:49 PM

Chapter 5 n Home Automation Operating Systems 99

Hass.io has been ported to run on the RasPi

and is a great addition to support the Home

Assistant HA OS, which can also be installed

on the RasPi. A developer named Pascal

Vizeli created Hass.io based on the ResinOS

and Docker framework. This wrapper OS is

configured using the Home Assistant user

interface (UI). However, a Hass.io dashboard UI

is also available, as shown in Figure 5-1, that will

allow you to install add-ons to extend the Home

Assistant capabilities.

The two add-ons shown in the figure are

Mosquito broker and Samba share. The first one

easily integrates with Google Assistant, whereas

the second add-on makes the Home Assistant

configuration accessible on a local network using

the Samba/Windows application.

Other available add-ons that were not

mentioned previously include

■n Duck DNS

■n Homebridge

■n InfluxDB

■n HASS Configurator

■n AppDaemon

OpenMotics

This software is a bit different from other HA

OSs described because it focuses mainly on

individual device control and much less on the

interoperability between devices. As such, it is

hard to build a comprehensive HA OS using

it, but it does have its place in providing a

framework for device interfaces.

This HA OS is licensed under GPL, version 2,

and its source code is available from GitHub.

Smarthomatic

This HA OS is an open-source framework

that focuses on hardware devices and interface

software rather than user interfaces. It is used

for such things as controlling lights, appliances,

and HVAC systems. It can measure ambient

temperature and water house plants, provided

that proper sensors and water systems are

employed.

This HA OS is licensed under GPL, version 3,

and its source code is available from GitHub.

Hass.io

Hass.io is a specialized HA OS that was created

solely to ease the installation, configuration,

and updating of the Home Assistant HA OS.

You may properly consider it as a wrapper

application for the Home Assistant because its

purpose is to make the experience using Home

Assistant as painless as possible while adding

some new capabilities to the “wrapped” HA OS.

These additional capabilities come in the form

of plug-ins, which extend Home Assistant to

use both Google Assistant and Let’s Encrypt,

as well as some other applications discussed

later. Hass.io also allows the user to take Home

Assistant configuration snapshots, which will

allow for rapid and seamless restoration of an

existing configuration.

 Hass.io dashboard.Figure 5-1

05_Ch05.indd 99 2/1/19 1:49 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

100 Home Automation with Raspberry Pi

Hass.io is open source and released under the

Apache 2.0 license. Hass.io is and will always

be optional. You can still run Home Assistant

wherever you can run Python.

Proprietary and Closed-Source
Hardware/Software

For the sake of completeness, I have presented

the following tables to show some of the

proprietary and closed-source HA hardware/

software solutions that are currently available.

These will change, as is the case with the open-

source solutions.

Proprietary Hardware

Table 5-1 details some of the more popular

proprietary HA solutions. Listed in the table

in most cases is the software that supports the

manufacturers’ devices.

Closed-Source Software

Table 5-2 details two closed-source HA

solutions. The applicable computer platforms are

also shown.

Table 5-1 Proprietary Hardware

Name
Configuration
Utilities Remarks

AMX LLC Netlinx Studio,
TP Design

Windows only

Control4 Composer Uses a Linux kernel;
configu ation
tools only work on
Windows; platform
also supports open
hardware using the
Z-Wave standard

Insteon Insteon hub,
Insteon for
Windows

Lighting,
appliances, sensors;
mobile apps for
Android and iOS;
configu ation tools
only work with
Windows

Lutron — Focused on lighting
and shades;
configu ation
tools only work on
Windows

SmartThings — Lighting,
appliances, sensors;
mobile apps for
Android and iOS

Vivint — Sensors and one-
touch hardware for
security

Table 5-2 Closed-Source HA Software Solutions

Name Windows macOS Linux Android iOS License Remarks

Microsoft HomeOS x Academic

HomeSeer x x x x x Bluetooth, 1-Wire,
Z-Wave, X10, UPB,
Insteon, Infrared

05_Ch05.indd 100 2/1/19 1:49 PM

Chapter 5 n Home Automation Operating Systems 101

the installation has likely been successful. You

must now use a browser on another computer

connected to your local network and go to this

site: http://hassio.local:8123/. You should see

something similar to what is shown in Figure 5-2.

You likely noticed in the figure that the HA

OS already discovered that I had a Philips

Hue smart lamp connected as well as a Roku

streaming device connected to my smart flat-

panel TV. In fact, a show started appearing

on the TV when I clicked on the Play button.

Completing the smart lamp connection required

only that I press a button on a Philips Hue

bridge device. After that, I had full control of

the smart light bulb, as you can see in Figure 5-3.

Installing the
Home Assistant HA OS
I elected to demonstrate the Home Assistant

HA OS because it is one of the most popular

HA software packages, and its installation

and configuration are very easy using the

Hass.io software package introduced earlier.

The only prerequisite for the installation is to

use a RasPi 3, Model B, and not the recently

introduced Model B+. I am not quite sure why

it is mentioned in the installation other than

there hadn’t been sufficient time to try it in

the installation process. That restriction may

very well be removed by the time this book is

published. In any case, just go to the website

(https://home-assistant.io/getting-started) and

carefully follow the eight steps described to

install the Home Assistant software package.

You will need a fresh 16- or 32-GB micro SD

card as part of the installation. Ensure that it is

a class 10 card to minimize the time it takes to

write a new image onto the card.

There is a step in the installation process that

will require you to edit an existing file on the

micro SD card containing WiFi configuration

details. This step is required to be accomplished

before you insert the card into the RasPi. The

edit is needed because the Hass.io automated

installation procedure will automatically start to

download the “real” Home Assistant software

on the initial RasPi boot and will fail if there

is no Internet connectivity. Of course, you can

skip the edit step if you use a wired Ethernet

connection.

The initial RasPi boot will take approximately

20 minutes, and an HA type icon will appear on

the monitor screen for a few minutes. However,

the icon will disappear, and there will be no

indication of a successful installation. The

monitor screen will be blank! Don’t despair;

 Initial Home Assistant welcome screen.Figure 5-2

05_Ch05.indd 101 2/1/19 1:49 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

102 Home Automation with Raspberry Pi

6. Set a password in the Config box, and

don’t forget to use quotes surrounding

your password. The following listing

is representative of what the initial

configuration file will look like.

{

"username":"admin",

"password":"YOUR_PASSWORD_WITH_QUOTES",

 "certfile": "fullchain.pem",
 "keyfile": “privkey.pem",
 "ssl": false,
 "allowed_networks": [
 "192.168.0.0/16",
 "172.30.0.0/16"
],

 "banned_ips": [
 "8.8.8.8"
],

 "banlimit": 0,
 "ignore_pattern": [
 "__pycache__"
],

 "dirsfirst": false,
 "enforce_basepath": false
}

7. Click on SAVE to save your new password.

8. Next, click on START at the top of the

Configurator add-on panel.

9. You will now be able to click the OPEN

WEB UI link to open the Web UI in a new

window.

The first thing you should do after connecting

to the Home Assistant page is to add a password

by editing the configuration file. Follow these

steps to accomplish this task:

1. Open Home Assistant by going to http://

hassio.local:8123/ using a browser on a

computer connected to the home network.

2. Click on the Menu icon located in the top

left-hand corner, and select Hass.io in the

sidebar, which will appear.

3. Select the ADD-ON Store, which will appear

in the Hass.io panel.

4. Install the HASS Configurator from the list

of add-ons that appears in the store listing.

You will be able to edit your Home Assistant

configuration using a Web interface with the

HASS Configurator.

5. Next, go to the Add-On Details page for

the configurator, where you will be able to

change settings, as well as start and stop the

add-on. Follow the steps in the Details page

to set up the add-on.

 Smart light control.Figure 5-3

05_Ch05.indd 102 2/1/19 1:49 PM

Chapter 5 n Home Automation Operating Systems 103

Modifying the Home Assistant
Using the Configurator

The first configuration task I will demonstrate

is how to add a new icon into the Home

Assistant sidebar, which when clicked will start

the Configurator. The following code must be

entered into the configuration.yaml file in order

to add the new icon:

panel_frame:
 configurator:
 title: 'Configurator'
 icon: mdi:wrench
 url: 'http://hassio.local:8123'

Click on the Browse Folder icon in the upper

left-hand corner of the Web editor to open a list

of Home Assistant files that can be edited. Select

the configuration.yaml file, as shown in Figure

5-6.

10. Type your username and password that you

recently created in the dialog box, as shown

in Figure 5-4. A Web-based editor should

now appear, as shown in Figure 5-5. You can

modify the Home Assistant configuration

using this editor. Do not close this Web page

because in the next section I discuss how

to make some modifications to the Home

Assistant HA OS using the Web editor.

 Login dialog box.Figure 5-4

 Configu ator Web-based editor window.Figure 5-5

05_Ch05.indd 103 2/1/19 1:49 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

104 Home Automation with Raspberry Pi

effect. I found that I had to power cycle the

RasPi to reboot the system. Trying to reboot the

RasPi over the Web was ineffective and a wasted

effort. You should wait several minutes before

attempting to log back into the Home Assistant.

Figure 5-7 shows the new welcome screen

after a successful reboot. You can clearly see the

new Configurator “wrench” icon in the sidebar,

which was not present prior to the preceding

configuration file edit.

Editing the Configuration Using Samba

It is also possible to avoid using the Configurator

Web-based editor by installing the Samba add-

on. Samba is a Windows application that allows

Linux/Unix programs to interoperate with a

Windows OS over a network. It is installed in

the Home Assistant in the same manner that the

Configurator was done. Go into the ADD-ON

store and select the Samba share application for

installation. Click on the Start button once the

Samba application has been installed.

A Hass.io icon should appear in the

Networking tab on a Windows computer

connected to a local network. Now use any text

editor available on the Windows machine to

make the edits to the configuration.yaml file, as

discussed earlier. Just ensure that the Windows

editing program does not insert any special

or unique formatting codes, which will render

the configuration file invalid. In this context,

I strongly recommend that you do not use

Microsoft Word to do any editing.

Enter the listing at the end of the file, playing

particular attention to the indentations in the

listing. Save the newly edited file, and exit the

Configurator. The Home Assistant must now

be rebooted for the new configuration to take

 Selection of the configu ation.yaml fil .Figure 5-6

05_Ch05.indd 104 2/1/19 1:49 PM

Chapter 5 n Home Automation Operating Systems 105

 New Home Assistant welcome screen.Figure 5-7

05_Ch05.indd 105 2/1/19 1:49 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

106 Home Automation with Raspberry Pi

You may be a bit startled to find out that

more than 1,100 devices and services are

referenced by this Web page, which you can see

by the total count (All) in the sidebar. I next

clicked on the Belkin Wemo icon, and it took me

to the Web page that describes how to integrate

a Belkin Wemo unit into the Home Assistant.

The following discussion is based strongly on

the contents from that page, which I like because

it explains in simple but clear terms how to

integrate a Wemo device.

The Wemo component is used to integrate

various Belkin devices with Home Assistant.

Configuring Integrations

It is now time to show you how to manually

configure devices and services. Most HA devices

and services will have dedicated instruction

regarding how to integrate them into an HA

OS. The first step, in most cases, is to locate

the device/services manufacturer in the Home

Assistant component Web page. This will be at

www.home-assistant.io/components/. I chose

adding the Belkin miniplug as a simple example

for a device integration. Going to the URL

shown earlier will reveal the Web page shown in

Figure 5-8.

 Initial Home Assistant components Web page.Figure 5-8

05_Ch05.indd 106 2/1/19 1:49 PM

Chapter 5 n Home Automation Operating Systems 107

requests on port 8989 because this is the address

to which the Wemo devices send their updates.

Emulated Wemo Devices

There are a number of software packages that

emulate Wemo devices and often use alternative

ports. All static configurations must include the

port value, as shown in the next example.

wemo:

static:

 - 192.168.1.23:52001
 - 192.168.52.172:52002

Remember that I discussed the Fauxmo

Wemo emulation in Chapter 4. In that

demonstration, I used port numbers ranging

from 50015 to 50026 along with the RasPi IP

address to control individual GPIO pins.

Automating the
Home Assistant
Creating automating scripts is a key feature in

successfully and effectively using an HA OS. The

process of creating a script is called automation,

and there a few basics that I need to cover

for you to have a good understanding of this

process.

Let’s say that Mary arrives home in the

evening and desires to have the hallway and

living room lights turned on by the Home

Assistant. This scenario may be broken down or

analyzed as follows:

(trigger) Mary arrives home

(condition) in the evening

(action) Turn on hallway and living room lights

This scenario has three distinct parts: the trigger,

the condition, and the action. Each part is part

Normally, Wemo devices will be automatically

discovered if the Home Assistant discovery

component service is enabled. However,

manually loading the Wemo component will

force a scan of the local network for Wemo

devices, even if the discovery component service

is not enabled.

Every discovered device results in an

additional entry into the configuration.yaml file,

for example, configuration.yaml entry

wemo:

Alternately, Wemo devices that do not seem to

be discoverable may be statically configured.

This may be the case if you have Wemo devices

on a subnet other than the one where Home

Assistant is running or have devices set up in a

remote location that is reachable over a virtual

private network (VPN). This approach is also

useful if you wish to disable discovery for

some Wemo dervices, even if they are local. An

example of a static configuration is

wemo:

static:

 - 192.168.1.23
 - 192.168.52.17

Note that any Wemo devices that are not

statically configured but still reachable via the

discovery service will still be added automatically

to the Home Assistant configuration file. Also

note that if you employ static IP addresses,

you may need to set up your router (typically

running the Dynamic Host Configuration

Protocol [DHCP] service) to force the Wemo

devices to use a static IP address. You should

check the DHCP section of your router

configuration for this capability.

If the device doesn’t seem to work and all you

see is the state “Unavailable” on your dashboard,

check that your firewall doesn’t block incoming

05_Ch05.indd 107 2/1/19 1:49 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

108 Home Automation with Raspberry Pi

All the current HA OS states will be shown as

entities. These entities can be anything, ranging

from lights to people, even the sun itself. A state

has multiple parts that are described in Table

5-3.

Table 5-3 State Components

Name Description Example

Entity ID Unique identifier or the
entity

light.kitchen

State The current state of the
device

home

Attributes Extra data related to the
device and/or current
state

brightness

Changes in state may be used as trigger

sources, and the current state can also be used in

setting conditions.

HA OS Services

All Home Assistant actions are carried out using

services. In the Home Assistant, all current

services are available by clicking on a Developer

Tool icon in the sidebar shown in Figure 5-10.

of an automation rule and has a distinct role.

These roles are

■n Trigger. Describe event(s) that should trigger

the automation rule. In this case, “Mary

arrives home.” The Home Assistant would

need to be aware of the state change of Mary

from “not being home” to “being home.”

■n Condition. A condition is an optional test

that can limit an automation rule to function

only for a specific requirement in your use

case. The condition detects current system

states. These states might include the current

time, weather, sensors, people, and other

things such as the sun. In this particular case,

the rule should be acted on only after the

sun has set. Time would not be a good test

because sunset changes constantly. Multiple

conditions also may need to be met before

the rule is acted on.

■n Action. The action will be performed after

a rule is triggered and all conditions are

met. In this example, both the hallway and

living room lights are turned on after Mary

arrives home in the evening. Actions can

be a multitude of things including setting

the temperature on a smart thermostat or

activating a scene, which I describe below.

It is important to differentiate between the

various roles. A light being on could very well

be a condition or even a trigger, whereas turning

a light on likely would be an action. Proper role

identification is one key to creating workable

automation rules.

Internal HA OS States

Automation rules depend on knowing the

internal state of the HA OS. In the Home

Assistant, the current state is available by

clicking on a Developer Tool icon in the sidebar

shown in Figure 5-9.

 Icon for current state(s).Figure 5-9

 Icon for current services.Figure 5-10

05_Ch05.indd 108 2/1/19 1:49 PM

Chapter 5 n Home Automation Operating Systems 109

trigger:

 platform: sun
 event: sunset
action:

 service: light.turn_on

Starting with Home Assistant, version 0.28,

all the automation rules can be controlled with

the front-end. Figure 5-11 shows a sample

automation rules control panel. Using a control

panel in the front-end means that automation

rules can be reloaded (or unloaded) without

restarting Home Assistant itself.

If you don’t want to see the automation

rule in your front-end, use the statement

hide_entity: True to hide it. You can also

use the statement initial_state: 'off'
or 'false' so that the automation is not

automatically turned on after a Home Assistant

reboot.

I added the preceding automation rule to the

configuration.yaml file and rebooted the RasPi

in order to reboot the Home Assistant OS with

the modified configuration file. After the Home

Assistant was started, I observed that the Hue

lamp turned on after I ensured that the sun

entity was false or off. This meant that it was

sunset.

Services allow the HA to control anything

already integrated into the OS, for example,

turning on a light, running a script, or enabling

a scene. Every service has both a domain and a

name. For example, the service light.turn_on

is capable of turning on any light registered in

the HA system. Services can also pass parameters

or arguments, which can set a specific color for a

multicolored lamp and/or set a light intensity.

You will have to set an initial state in your

automations in order for Home Assistant to

enable them on restart. The following is an

example of a code snippet to be placed in the

configuration.yaml file to turn on automation:

automation:

- alias: Automation Name
 initial_state: True
trigger:

 ...

Automation Example

It would beneficial at this point to actually create

a working automation example. The automation

rule is

Turn on a light after sunset

This rule implicitly defines a trigger that

somehow tracks the sunset and will fire the

rule when the sun does set. The service is

light.turn_on, and if it is called without

any parameters or arguments, it will turn on all

integrated lights. An example automation rule

entry in the configuration.yaml file would be

Example configuration.yaml entry
automation:

 alias: Turn on the lights when the sun
sets

 initial_state: True
 hide_entity: False

 Sample automation rules control panel.Figure 5-11

05_Ch05.indd 109 2/1/19 1:49 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

110 Home Automation with Raspberry Pi

in the Home Assistant sidebar. Write down the

names of all the light entities. Suppose that they

are light.table_lamp, light.bedroom, and

light.ceiling. A group will be set up in the

automation rule that will avoid the issue of hard

coding the light entity IDs in the automation

rule. This approach will separate the living room

lights from all other lights in the automation

rule.

The configuration.yaml file is once again

modified with this new group to ensure that only

the desired light(s) in the group are activated:

Example configuration.yaml entry
group:

 living_room:
 - light.table_lamp
 - light.ceiling

automation:

 alias: Turn on the light when the sun
sets

trigger:

 platform: sun
 event: sunset
 offset: "-01:00:00"
condition:

condition:state

 entity_id: group.all_devices
 state: 'home'
action:

 service: light.turn_on
 entity_id: group.living_room

The holidays are approaching, and you decide

to purchase a remote control switch to control the

Christmas tree lights using the Home Assistant.

You first integrate the remote switch with the

Home Assistant and find the appropriate entity

ID using the State Developer tool. In this case, it

is switch.christmas_lights. The automation

rule must be modified once more to handle the

switch, but the action light.turn_on is no

Modifications to the Automation
Example

Let’s suppose that after a few days of using the

automation rule you observe that the lights went

on after it was already dark and also that the

lights went on when nobody was home. This

means that it is time for some modifications and

conditions to be added to the automation rule.

One modification would be to add a time offset

to the sunset trigger as well as adding a condition

to test whether anyone is home. The following

modified rule should replace the existing

automation rule in the configuration.yaml file:

Example configuration.yaml entry
automation:

 alias: Turn on the lights when the sun
sets

trigger:

 platform: sun
 event: sunset
 offset: "-01:00:00"
condition:

condition:state

 entity_id: group.all_devices
 state: 'home'
action:

 service: light.turn_on

I did not test this particular automation script

because I had not yet set up presence detection,

which I describe in a later section. The preceding

script is not the end of this tale of automation.

You recently discovered that the bedroom lights

also went on when the living room and kitchen

lights went on after sunset. What you really want

is for only the living room lights to turn on after

sunset.

The first thing to do is to check the names

of all the light entities that are integrated into

the HA system. You can do this by clicking on

the Developer Current State icon, Figure 5-9

05_Ch05.indd 110 2/1/19 1:49 PM

Chapter 5 n Home Automation Operating Systems 111

1. Scan for connected devices on the local

network.

2. Scan for Bluetooth devices within range.

3. Connect to a third-party service.

Scanning for connected devices is easy to set up

with options that include using Home Assistant

components known as router-based devices/

services, a portion of which is shown in Figure

5-12.

The second approach uses the Nmap utility.

The Web page www.home-assistant.io/

components/device_tracker.nmap_tracker/

describes how to set up the Nmap utility on the

RasPi. This approach does have its limitations,

but it will only be able to detect whether a device

is at home, and modern smartphones may

show as not home inaccurately because they

disconnect from WiFi if idle after a certain time

period.

You can also scan for Bluetooth and

Bluetooth LE (light energy) devices. Fortunately,

modern smartphones don’t turn off Bluetooth

automatically, although the range is smaller than

with WiFi.

Home Assistant currently supports many

third-party services for presence detection,

such as OwnTracks over MQTT, OwnTracks

over HTTP, GPSLogger, and Locative. Overall,

a wide range of options is available, both for

scanning the local network and for third-party

services.

Home Assistant will know the location of

your device if you are using a device tracker that

reports a GPS location (such as OwnTracks,

GPS Logger, the iOS app, and others). You will

also be able to add names to the locations of

devices by creating zones. In this way, you can

easily locate on the state page where the people

longer applicable to the new device, which is

a switch. Fortunately, Home Assistant has a

service named homeassistant.turn_on that is

capable of turning on any entity. The modified

automation rule is

Example configuration.yaml entry
group:

 living_room:
 - light.table_lamp
 - light.ceiling
 - switch.christmas_lights

automation:

 alias: Turn on the lights when the sun
sets

 hide_entity: True
trigger:

 platform: sun
 event: sunset
 offset: "-01:00:00"
condition:

condition:state

 entity_id: group.all_devices
 state: 'home'
action:

 service: homeassistant.turn_on
 entity_id: group.living_room

Setting Up Presence Detection

Presence detection detects whether people are at

home, which is a very valuable input for creating

automation scripts. Knowing who is at home

or where they are will open a whole range of

automation options, including

■n Sending a notification when a child arrives at

school

■n Turning on the air-conditioning when I leave

work

The Home Assistant device tracker component

provides presence detection. It supports three

different methods for presence detection:

05_Ch05.indd 111 2/1/19 1:49 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

112 Home Automation with Raspberry Pi

Summary
This chapter described what an HA OS is

and how it operates. I began it with a brief

description of how a regular computer OS works

and proceeded to extend that discussion to how

the HA OS functions and how it differs from a

computer OS.

A detailed list regarding a dozen open-source

HA OSs was next presented. I also included

a discussion of the Hass.io OS, which is a

wrapper-type OS for the Home Assistant HA

in your house are and use it both for triggers and

conditions for automation scripts.

There is one caution in that if you’re looking

at the map view, then any devices in your home

zone won’t be visible. The Home Assistant map

view is part of the front-end and is designed to

display the location of all tracked devices, except

those located in the home zone. You add the

map by including the following simple entry in

the configuration.yaml file:

Example configuration.yaml entry
map:

 A few of the Home Assistant presence-detection devices/services.Figure 5-12

05_Ch05.indd 112 2/1/19 1:49 PM

Chapter 5 n Home Automation Operating Systems 113

on named the Configurator. A Belkin Wemo

miniplug was manually integrated into the Home

Assistant using the Configurator.

I next demonstrated how to create an

automation script that used both states and

services. An extensive discussion followed about

modifying the automation script three times to

optimize its operation. The chapter concluded

with a brief discussion of presence detection and

how to implement it in the Home Assistant.

OS addressed throughout the remainder of the

chapter.

A through discussion on how to install

and configure the Home Assistant HA OS

on a RasPi 3, Model B, was next. A brief

demonstration of using the Home Assistant with

a Philips Hue smart bulb also was included.

I next showed how to modify the Home

Assistant configuration file using a Web-based

editor provided by a Home Assistant add-

05_Ch05.indd 113 2/1/19 1:49 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

00_FM.indd 6 2/1/19 1:36 PM

This page intentionally left blank

C H A P T E R 6

Z-Wave and Home Automation

115

USING Z-WAVE IN A RASPI HA project is the

intriguing subject for this chapter. I have

mentioned Z-Wave in previous chapters because

it is a predominant and proven technology

that has been adopted by many HA device

manufacturers. These companies include

established brands such as GE, Black & Decker,

Schlage, ADT, and Draper.

Z-Wave Fundamentals
Z-Wave is a wireless packet-based RF

communications platform. It is somewhat similar

to WiFi because the latter also uses RF and

packets, but there are also significant differences.

Z-Wave uses RF transceivers that operate at

908.42 megahertz (MHz) in the United States

and at 860 MHz in Europe. These frequencies

belong to the industrial, scientific, and medical

(ISM) radio band, which is significantly

separated from WiFi frequencies, which are

either at 2.4 or 5.0 gigahertz (GHz). The ISM

band is often subject to much less noise and

interference than the higher frequency WiFi

bands. A Z-Wave RF transceiver has a typical

range of 100 meters (m), which is comparable

with a WiFi node. It is also subject to the signal

attenuation that occurs indoors owing to walls

Parts List

Item Model Quantity Source

RasPi 3 B 1 adafruit.com
amazon.com
mcmelectronics.com

Z-Wave duplex outlet GE Z-Wave Plus Smart Lighting
and Appliance Control Receptacle
Outlet

1 amazon.com

Z-Wave controller GE Z-Wave Wireless Lighting
Control LCD Remote

1 amazon.com

Z-Wave outdoor module Jasco Z-Wave Plug-In Outdoor
Module (45704)

1 amazon.com

Z-Wave USB dongle Aeon Labs DSA02203-ZWUS
Z-Wave Z-Stick Series 2 USB
Dongle

1 amazon.com

06_Ch06.indd 115 2/1/19 1:55 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

116 Home Automation with Raspberry Pi

layers were designed to cover a host of different

protocols, some of which are irrelevant for

Z-Wave. Figure 6-2 shows the four layers that

are implemented with remarks in each layer

detailing the implementations.

Layer 1 is the physical layer, which uses an

ISM band RF transceiver to both send and

receive digital packets. These packets are raw in

nature in the sense that they are either decoded

in the model upper layers for receive packets

or simply sent out for the already formatted

transmit packets from the upper layers. Every

node has Carrier-Sense Multiple Access with

Collision Detection (CDMA/CD) hardware,

which determines when it is safe to transmit over

the network. CDMA/CD has been compared

with the very old-fashioned telephone party

line, where a user would first pick up the headset

and listen to determine if anyone was currently

talking on the line. The user would then start

the call if nothing was heard and otherwise

hang up and try a little bit later. CDMA/CD

and doors interfering with the signal strength.

Z-Wave signal extenders are available, just as

there are WiFi signal extenders.

A group of Z-Wave transceivers makes up a

mesh, with each transceiver considered a node

in that mesh. Each node can both receive and

transmit digital packets. Nodes not only can

originate data packets but also can receive and

retransmit data packets from other nodes. This

action is known as digipeating and is a very

important property of a mesh network. A node

that is digipeating is called a hop. Only four hops

are allowed for any specific data packet because

of regulatory concerns regarding unlicensed

operation within the ISM band. All data packets

are destroyed after the fourth hop in a process

known as hop kill.

Z-Wave Network Basics

The Z-Wave data communications protocol

is in compliance with the Open System

Interconnection (OSI) seven-layer network

model. The complete seven-layer model is shown

in Figure 6-1.

However, not all the model layers are

implemented in the Z-Wave communications

protocol. This is because the OSI model’s seven

Transmitted
Data Packet

Received
Data Packet

RF Link

Application (Layer 7)

Presentation (Layer 6)

Session (Layer 5)

Transport (Layer 4)

Network (Layer 3)

Data Link (Layer 2)

Physical (Layer 1)

 OSI seven-layer network model.Figure 6-1

 Z-Wave-specific ne work model.Figure 6-2

OSI Level

7

4

3

2

1

Application Layer
(Main Loop)

Network Routing
(Frame Routing, Topology Scan,

Routing Table Update)

Transport Layer
(Retransmission, ACK, Checksum)

PHY/MAC Layter
(Media Access @

908MHz/860MHz)

Physical Layer
RF ISM Band

Z-Wave-
Speciÿc

Commands

Application-
Speciÿc

Commands

06_Ch06.indd 116 2/1/19 1:55 PM

Chapter 6 n Z-Wave and Home Automation 117

errors in the data packet, which is why there

are two checksum bytes included in every data

packet. These bytes are used by the layer 3

implementation code to test the received data

payload using a mathematical algorithm called

the cyclic redundancy check (CRC). It should be

apparent that layer 3 works mainly with receive

packets to ensure a stable communications link.

It must also generate the checksums for the

transmit packets.

Layer 4 is for routing, where transmit packets

have address information included in the packet

to ensure that the packet arrives at the intended

node. This layer also ensures that nodes will

digipeat. Routing information is maintained in a

table located in the primary network controller

node. It is possible to have multiple primary

controllers present in the network, but only one

can be active at any given time. Figure 6-3 shows

a simple network topology along with a routing

table for that topology.

You should be able to see that there is no

direct connection between nodes 4 and 5. Any

packets exchanged between the two must go

through node 2 or the longer path from node

2 to node 3 to node 6. Note there is an even

longer path—node 1 to node 2 to node 3 to node

6—but this path would never be taken because

it involves four hops, and the packet would be

dumped because of the four-hop restriction I

mentioned earlier.

does the same except that the time frame is in

milliseconds rather than minutes, as would be

the case for a party line.

Layer 2 is the data link, where a packet to

be transmitted has a synchronization preamble

along with a start-of-frame (SoF) byte

prepended to the data payload sent from higher

OSI levels. Additionally, an end-of-frame (EoF)

byte is appended to the end of the data payload.

Received packets are treated in the reverse

manner; that is, the received raw data packet

has its framing bytes removed before the data

payload is sent upward to the higher OSI layers.

Layer 3 is the transport, where additional

bytes are added to the data packet being

prepared for transmit. These bytes depend on

the active communication process. Z-Wave is

a connection-type network, which has a very

robust method of ensuring packet delivery.

Layer 3 uses an acknowledgment (ACK) byte

and negative acknowledgment (NACK) byte

to maintain a continuous communications

link. A node acting as a receiver will send

back an ACK packet to the transmit node if it

successfully receives a data packet. Likewise,

it will send back a NACK if the packet was

corrupted or somehow not completely received.

This handshake will continue until the original

packet is successfully sent or a preset limit of

retries is reached, a so-called timeout operation.

Using ACKs and NACKs depends on detecting

Node Topology Routing Table

1
2
3
4
5
6

1
0
1
0
1
0
0

6
0
0
1
0
1
0

5
0
1
0
0
0
1

4
1
1
0
0
0
0

3
0
1
0
0
0
1

2
1
0
1
1
1
0

1 2 3

4 5 6

 Simple mesh network topology with routing table.Figure 6-3

06_Ch06.indd 117 2/1/19 1:55 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

118 Home Automation with Raspberry Pi

has this Home ID, which slave nodes acquire

when they join the network. Every secondary

controller also uses the same Home ID when

they are attached to the network. Individual

slave nodes have a 1-byte ID that is assigned by

the primary controller when that slave node joins

the network.

Network Devices

Z-Wave network controllers and slaves are

the two device types that comprise a Z-Wave

network. Slaves are also known as end point

devices because they only respond to the

command packets sent by the controller. Slaves

usually contain a microcontroller with GPIO

pins that, in turn, control TRIAC (triode

for alternating current) devices, which turn

AC mains on and off. These GPIO pins are

most likely to use optoisolators for maximum

protection against inadvertent faults with the

AC mains.

Figure 6-4 shows a Z-Wave-enabled duplex

outlet I used for the next demonstration. It

resembles an ordinary US duplex outlet except

for the small push button between the sockets.

Of course, the Z-Wave stamping on the front

Layer 7 is the final one used in the Z-Wave

network model, and it is the “highest”

abstraction, the application layer. It is in this

layer that the user inputs Z-Wave commands

either through direct action such as a remote

control or via program or script code. This

layer is the user interface (UI), and it may

be implemented in hardware, software, or a

combination of both. Table 6-1 details the five

different packet types used in a Z-Wave mesh

network.

Table 6-1 Z-Wave Network Packet Types

Packet
Type Description

Payload
Length Remarks

Multicast Broadcast to all
network nodes

64 bytes
max.

0xff
address

Singlecast Sent to a specific
node

64 bytes
max.

Up to
232
nodes

Routed Repeated packet
(digipeated)

64 bytes
max.

4 hops
max.

ACK Acknowledgment 0 —

NACK Negative
acknowledgment

0 —

Every Z-Wave network uses a 4-byte ID

called the Home ID. Each primary controller

 Z-Wave-enabled duplex outlet.Figure 6-4

06_Ch06.indd 118 2/1/19 1:55 PM

Chapter 6 n Z-Wave and Home Automation 119

of being placed in a fixed location. Such self-

discovery is made possible by having the portable

controller ping nearby nodes that are within

their RF range. The controller can then join the

network based on the results of the ping packet

search. Portable controllers are battery powered

and are often used as the primary controller

within a Z-Wave network. The controller shown

in the figure runs on three AAA batteries, which

last a long time.

Static controllers are the other type, and they

are so named because they are powered by AC

mains and are situated in fixed locations. A static

controller can easily monitor all the network

traffic and often serves as a secondary controller

in an advanced network configuration. The

current network configuration may be stored

in it, and if so, it is known as a static update

controller (SUC).

Most often a static controller serves as a

bridge between Z-Wave components and devices

and non-Z-Wave devices, such as X-10 devices.

The static controller acts as a virtual node

when deployed in this manner, bridging and

converting “foreign” data packets between the

outside devices and the Z-Wave network.

A Z-Wave network may have up to 125 virtual

nodes, which could be a great help in the case

of a large HA system with many legacy devices

and components that need to be converted to

a Z-Wave network. Static controllers also may

serve as TCP/IP gateways, thus allowing Z-wave

network Internet connectivity.

Static controllers may act as primary

controllers in cases where the normal primary

controllers can be placed into a static control

proxy situation. In such a setup, this advanced

configuration is known as a SUC ID server (IS).

I will not be using such a complex configuration

in any book project, but it does suggest that a

large variety of system configurations can be

created using Z-Wave controllers.

reveals the true nature of this device. This

outlet is also about thirty times more expensive

than an ordinary “dumb” duplex outlet, but

you wouldn’t need to have all that many smart

control points in your house.

The user must press the button on the

duplex outlet to join the Z-Wave network

when prompted by the controller device. I will

demonstrate how to join the outlet shortly in a

demonstration, but I next need to mention a few

things regarding the network controllers.

Z-Wave network controllers are either

portable or static. Portable controls resemble

ordinary AV remote controls, as can be seen

in Figure 6-5, which is a GE portable Z-Wave

controller. These controllers must be able to

self-discover their location within the network

topology because they do not have the advantage

 GE portable Z-Wave controller.Figure 6-5

06_Ch06.indd 119 2/1/19 1:55 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

120 Home Automation with Raspberry Pi

a lot of additional components, including a

RF transceiver operating on either the U.S.

or European ISM frequency. There is also a

built-in digital modem along with a hardware

implementation of the network stack operations

that were discussed in the preceding section.

The ZW0301 chip has only 32 kilobytes (kB)

of Flash memory and a meager 2 kB of static

random access memory (SRAM). It operates

on a supply voltage range of 2.1–3.6 V DC

and consumes a maximum of 36 milliamperes

(mA) when transmitting. Figure 6-6 is the block

diagram of the ZW3102N showing all the

components that constitute this module.

The ZW0301 chip has several of the standard

functions that have been discussed in previous

chapters, including the serial peripheral interface

(SPI) and the universal asynchronous receiver/

transmitter (UART) interfaces. The chip also has

The Z-Wave Microcontroller

The original Z-Wave chip was designed and

manufactured by Zensys, now known as Sigma

Designs. All certified Z-Wave component

manufacturers must use this authentic Z-Wave

chip in their devices. This ensures that any

Z-Wave node properly joins the network and

communicates with other nodes produced by

other manufacturers. The Zensys chip design

is discussed in this section because it forms

the basis for the complete Z-Wave concept

and provides a background for understanding

how the RasPi can function as a controller in a

network.

A recent Zensys single module is Model

ZW3102N, containing a ZW0301 chip that uses

the venerable 8051 core with a 32-MHz external

crystal. This is a hybrid module containing

ZM3102N Z-Wave Module

ZM3101 Single Chip

Decoupling System Crystal
RF Supply

Voltage Filtering

RF Front End
RF Transceiver

Modem
SFR

WUT

I/O Interfaces

8051W CPU

System
Clock

Timer
0/1

POR/
Brown-

out

8/12 Bit
ADC

General
Purpose

Timer

Watch-
dog

32K Bytes
Flash Memory

Z-Wave SW API
and

Application SW

2 kbytes
SRAM

UART

256 bytes
SRAM

Interrupt
Control

SPI
Control

Triac
Control

Power
Mgt.

 Block diagram of the ZW3102N module.Figure 6-6

06_Ch06.indd 120 2/1/19 1:55 PM

Chapter 6 n Z-Wave and Home Automation 121

to press this button to join the device to the

network when prompted by the controller menu.

The demonstration network nodes or

slaves will be made up of the duplex outlet

and outdoor module, each controlling a small

table lamp. The duplex outlet will actually

be connected to a power cord plugged into

a regular outlet for this temporary test

arrangement. Figure 6-9 shows the test setup on

my dining room table.

At first, I arbitrarily assigned device number

4 to the outdoor module and device number 8 to

the duplex outlet. I then proceeded to turn the

lamp on and off using the portable controller,

and everything worked as expected. I was also

able to control both devices simultaneously

by selecting the “All” mode on the portable

controller. The next part of the test was a bit

harder because I have a smaller home with an

open-plan layout, meaning that there are fewer

interior walls than an average cape-style home.

I was finally able to place the outdoor module

device in the basement and the duplex outlet

on the first floor, and I operated the controller

in a second-floor bedroom. I was not able to

timers, interrupts, a watchdog monitor, power

management, and brownout detection. It has

a four-channel, 12-bit analog-digital converter

(ADC), a pulsewidth-modulation controller, and

an enhanced TRIAC control with zero crossing

detection. A total of 10 GPIO lines are available,

but some are multiplexed or shared with other

I/O functions. The ZW3102N module is very

small. Figure 6-7 shows the module with a U.S.

quarter coin for comparison.

The module does need an external antenna,

and a few capacitors and inductors complete a

Z-Wave device installation. The software is also

fixed in the Flash memory and is not available

for examination or modification. This where

this chapter’s RasPi project will open up the

Z-Wave network so that you have a chance to

experiment with various configurations and

monitor network traffic. But first I would like to

demonstrate a simple Z-Wave network.

Z-Wave Demonstration

This demonstration uses a portable controller

(shown in Figure 6-5) along with two nodes. One

node is the duplex outlet shown in Figure 6-4,

and the other is an outdoor module, as shown in

Figure 6-8.

Please notice the black button located on the

top of the device in Figure 6-8. The user needs

 ZW3102N module.Figure 6-7

 Z-Wave outdoor module.Figure 6-8

06_Ch06.indd 121 2/1/19 1:55 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

122 Home Automation with Raspberry Pi

RasPi and the Z-Wave
Interface
Connecting a RasPi to a Z-Wave network

requires the use of a Z-Wave USB dongle. One

such device made by Aeon Labs, called the

Z-Stick, is shown in Figure 6-10. It incorporates

a Zensys module and a USB interface chip

along with some additional firmware to make

the two components work together. It also has

an internal rechargeable battery that enables the

storage of firmware updates and configuration

data. The Z-Stick has three operating modes that

you should know about:

■n Inclusion. This mode adds or includes

Z-Wave devices into the network. To add a

device:

turn on the basement module without having

the first-floor module plugged in. This proved

that the first-floor module was digipeating and

forwarding the control packets to the module

located in the basement. The controller showed

“Failure” on its liquid-crystal display (LCD)

screen with the first-floor module unplugged.

This status indicates that no ACKs were being

received. Obviously, no NACKs could be sent

because the first-floor module was unpowered

and the basement module was out of range.

Setting up this demonstration was very simple,

and it amply shows that the high-tech Z-Wave

network functioned well while providing the user

with a very easy-to-use and useful interface. The

next demonstration shows how to interface a

RasPi with a Z-Wave network. This setup will

allow for some interesting experiments.

 Z-Wave test system.Figure 6-9

06_Ch06.indd 122 2/1/19 1:55 PM

Chapter 6 n Z-Wave and Home Automation 123

SSH Login
In this section, I will show you how to log onto

the RasPi using a network connection. The

Stretch Linux distribution, as well as many

others, includes a great service known as Secure

Shell (SSH). It is a network protocol that

uses cryptographic means to establish secure

data communication between two networked

computers connected via a logical secure channel

over a physically insecure network. SSH uses

both server and client programs to accomplish

the connection.

One of the questions that arises when you are

first configuring your RasPi is whether or not

to start SSH on boot-up. I recommended that

you answer yes because that automatically starts

the SSH daemon each time you start the RasPi.

The second part of the connection is the client

program, which is highly dependent on the type

of computer you are using to connect to the

RasPi. I recommend using putty.exe because

most of you will be using a Windows-based

machine. Putty is freely available from a variety

of Internet sources, so I would recommend

a Google search to locate a good download

mirror. You should see the Figure 6-11

screenshot, assuming that you answered yes to

the SSH question and have downloaded and are

running Putty on a Windows-based computer

1. Unplug the Z-Stick from the USB

connector.

2. Press the large button on the Z-Stick.

The Z-Stick LED will start to slowly

blink.

3. Go to the device that you wish to add

while holding the Z-Stick, and press and

release the device’s button.

4. The Z-Stick LED will blink rapidly for

several seconds, then glow steadily for

3 seconds, and finally return to a slow

blinking state. The device has been added

to the network.

■n Removal. This mode will remove or exclude

Z-Wave devices from the network. To remove

a device:

1. Unplug the Z-Stick from the USB

connector.

2. Press and hold the large button on the

Z-Stick for about 3 seconds. The Z-Stick

LED will start to blink slowly and then

transition to a fast blink.

3. Go to the device that you wish to remove

while holding the Z-Stick, and press and

release the device’s button.

4. The Z-Stick LED will then glow steadily

for 3 seconds and finally return to a

fast blinking state. The device has been

removed from the network.

■n Serial API. This is the mode where the

Z-Stick acts as the portal between the RasPi

and the Z-Wave network. Simply plug it into

a powered hub USB connector because the

RasPi does not have sufficient power for the

Z-Stick. RasPi software will now take control

of the Z-Wave network.

I now have to take a brief detour from the

Z-Wave to introduce the Secure Shell login

process that will be used in establishing the

control software environment.

 Aeon Labs Z-Stick.Figure 6-10

06_Ch06.indd 123 2/1/19 1:55 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

124 Home Automation with Raspberry Pi

At this point, you are in a RasPi terminal

window session—absolutely no different from

looking at a monitor connected directly to a

RasPi and using a locally connected keyboard

and mouse. This transparency is what makes

SSH so great; it allows you to remotely log in

to the RasPi without being concerned with any

minutiae about the connection. You may type

connected to the same network that connects to

the RasPi.

Don’t be concerned with the host name that

appears in the screenshot; I will get to that

shortly. When you click on the Open button at

the bottom of the Putty screen, you will see a

screenshot of a RasPi terminal window asking,

in this case, for a login password (Figure 6-12).

 Putty screenshot.Figure 6-11

 RasPi terminal window.Figure 6-12

06_Ch06.indd 124 2/1/19 1:55 PM

Chapter 6 n Z-Wave and Home Automation 125

Software Installation

Much of the following discussion is based on

a blog tutorial written by Ben Francis that is

available at https://hacks.mozilla.org/2018/02/

how-to-build-your-own-private-smart-home

-with-a-raspberry-pi-and-mozillas-things

-gateway/. The first thing you will need to

do is to download the disk image from https://

iot.mozilla.org/gateway. The current gateway

was version 0.4 at the time of this writing.

Next, create a bootable micro SD card using

the procedures discussed in Chapter 1. Mozilla

also has instructions on how to run the gateway

software on a PC or Mac if you are inclined to

experiment. However, I will be staying with the

RasPi installation for this book.

The gateway software will start a WiFi

hot spot with the SSID name of Mozilla IoT

Gateway. You should join this network in

order to connect the RasPi to your own WiFi

network. If you are using another computer on

your network or a smartphone, the Mozilla IoT

Gateway will show all the local WiFi networks

detected, as shown in the Figure 6-13 tutorial

example. Select your regular network, and

enter the passkey or pass phrase for a secured

network.

in any normal command and have the RasPi

respond as appropriate.

I will now return to my Z-Wave software

discussion, now that you are familiar with SSH.

Project Things by Mozilla.org
Project Things is a software framework

consisting of applications, utilities, and services

that can connect smart HA devices to computers

and microcontrollers such as the RasPi. The

latest implementation of Project Things is

called the Things Gateway. It will allow you

to directly control and/or monitor HA devices

and appliances over the Web. It can replace

all the separate mobile apps that can quickly

accumulate for individual HA devices, systems,

and appliances. Mozilla has made available

a full RasPi Debian Linux distribution that

contains the Things Gateway preinstalled and

ready for deployment. You will need to use an

OpenZWave-compatible dongle (adapter) to be

able to communicate with any existing Z-Wave

devices. I used an older Aeon Labs Z-Stick

S2 dongle that I had from use in previous

projects. You can also use this if it still available;

otherwise, use either one of the following:

■n Sigma Designs UZB Stick

■n Aeotec Z-Stick (Gen5)

Ensure that the stick uses the correct frequency

for your region, which I discussed in an earlier

section.

 WiFi network selection.Figure 6-13

06_Ch06.indd 125 2/1/19 1:55 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

126 Home Automation with Raspberry Pi

After setting the secure gateway address, you

will be placed into your new subdomain, and

another dialog box will appear, where you will

enter data to create an account in the gateway.

This data consist of your name, e-mail address,

and password. Figure 6-16 shows this account

setup screen.

This last step completes the gateway

configuration/setup, and you will now see an

Add Things screen, as shown in Figure 6-17.

How to add things is the subject for the next

section.

If you are using the RasPi browser, go to

http://gateway.local/ and start the setup process.

Figure 6-14 shows the screen you will see while

the gateway connects to your WiFi network.

You will be asked to enter a unique

subdomain name once you are connected to the

gateway URL. You will also need to enter an

e-mail address, which will enable you to retrieve

your subdomain name at any future time. The

subdomain name is used, in part, to generate an

Secure Sockets Layer (SSL) certificate, which, in

turn, is used to establish a secure Internet tunnel

so that you can remotely access the gateway.

Figure 6-15 shows the screen for entering these

data.

 Connecting to the local WiFi network.Figure 6-14
 Account setup screen.Figure 6-16

 Data entry for secure gateway address.Figure 6-15 Add Things screen.Figure 6-17

06_Ch06.indd 126 2/1/19 1:55 PM

Chapter 6 n Z-Wave and Home Automation 127

in the figure, and the newly paired devices will

appear on the Things screen, as shown in

Figure 6-19.

Test Run

The Z-Wave test of the gateway system was

rather simple. I simply plugged an AC lamp into

the outdoor Z-Wave device and turned the lamp

on and off by clicking on the Switch icon shown

in the figure. Incidentally, I am unsure what the

Z-Wave-16a124a-4-Sensor icon shown in the

figure refers to. It may be an undocumented

feature for the switching device. In any event,

clicking on it did not cause an action to be

observed regarding the AC lamp plugged into

the switch.

Add Things

You add things to the gateway by clicking on

the “+” icon located at the lower right-hand

corner, as shown in Figure 6-17. I did this, and

Figure 6-18 shows the things or devices that were

discovered.

Any discovered device must be linked or

paired subsequently with the gateway. This is

easily done with Z-Wave devices by following the

procedure I detailed earlier. When the pairing

is completed, click on the Done button shown

 Discovered Z-Wave devices.Figure 6-18

 Things screen.Figure 6-19

06_Ch06.indd 127 2/1/19 1:55 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

128 Home Automation with Raspberry Pi

shown that enables a RasPi to Z-Wave interface

to be implemented. Several alternatives to the

Z-Stick were also discussed

I next showed you a highly useful SSH remote

login procedure that you can use to access the

RasPi while the open-source Z-Wave software

is running. The open-source software executes

as a Web service, thus making the RasPi GUI

inaccessible. Any user access to the RasPi must

then be done using a remote access service such

as SSH.

I used the Project Things framework by

Mozilla to create a gateway to control the

Z-Wave devices introduced earlier in the chapter.

This project’s version generates a gateway that

you use to access and control Z-Wave devices.

The Z-Stick is used to communicate between the

RasPi and any nearby Z-Wave devices. I went

through a detailed discussion of how to install

and configure the gateway. The chapter ended

with a simple demonstration of turning an AC

lamp on and off using commands sent through

the gateway.

Summary
I started this chapter with a definition of home

automation and provided a list of representative

tasks that would fall under the broad umbrella

that comprises home automation.

Next was a discussion of the underlying base

technologies that support HA implementations.

I provided a rationale for selecting the Z-Wave

protocol because it is a modern, highly flexible

system that is very easy to configure and lends

itself quite well to a simple RasPi interface

connection.

Two representative Z-Wave devices were

described next, along with a working small-scale

Z-Wave network. A network demonstration was

created using a commercial portable controller

device.

The core Z-Wave chip was discussed to

provide you with a better understanding of how

the overall network functions and how devices

are highly dependent on the chip functions to be

added seamlessly to the network. A Z-Stick was

06_Ch06.indd 128 2/1/19 1:55 PM

C H A P T E R 7

Mycroft and Picroft

129

THIS CHAPTER INTRODUCES an open-source

personal voice assistant project named Mycroft.

Mycroft has a RasPi variant named Picroft,

which I will discuss after going through the

Mycroft introduction.

Mycroft’s home website is mycroft.ai.

Mycroft is the invention of Ryan Sipes and

Joshua Montgomery, who liked the idea of

creating a simple and basic intelligent virtual

assistant, similar to commercial ones in

existence at the time but based entirely on an

open-source concept. Mycroft uses only open-

source components for the intelligent personal

assistant and knowledge navigator and uses the

Linux OS as a platform. The Mycroft developers

were very much concerned with privacy issues

and strongly believed that developing an open-

source solution would strongly address those

concerns. It turns out that they were entirely

correct in this area because privacy concerns

have recently arisen concerning both the Google

and Amazon systems. No such problems are

anticipated with the Mycroft solution.

The Mycroft team has raised funds through

a variety of sources, including private equity

investors, and has offered shares of the company

to the public through Startengine, an equity

crowdfunding platform. The project itself is not

Parts List

Item Model Quantity Source

RasPi 3 B 1 adafruit.com
amazon.com
mcmelectronics.com

USB microphone Fifine USB icrophone 1 amazon.com

USB speakers ARVICKA Blue LED USB
Speakers

1 amazon.com

Tactile push button Commodity 1 adafruit.com

2.2-kiloohm (KΩ), ¼-watt (W)
resistor

Commodity 1 adafruit.com

Philips Hue smart lamp White 1 Home improvement store
amazon.com

Philips Hue bridge Philips Hue Smart Hub 1 amazon.com

AC table lamp Commodity 1 Home improvement store

07_Ch07.indd 129 2/1/19 1:56 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

130 Home Automation with Raspberry Pi

Adapt is important for interpreting the user’s

natural-language input. For example, you might

want to create a voice user interface that allows a

user to play a Pandora station. The utterances a

user might say include

■n “Turn on Pandora.”

■n “Play Pandora.”

■n “Play my Jimmy Buffett Pandora station.”

The Adapt intent parser takes this input and

generates a JSON data structure similar to this:

{

 "confidence": 0.61,
 "target": null,
 "Artist": "jimmy buffett",
 "intent_type": "MusicIntent",
 "MusicVerb": "put on",
 "MusicKeyword": "pandora"

}

Applications, which are Mycroft Skills

in this case, can then parse the JSON data

and take appropriate action, such as playing

Jimmy Buffett using the open-source Pandora

application. I will discuss Mycroft Skills in much

greater detail in a later section.

Mycroft uses Mimic for speech synthesis,

which, in turn, is based on the Festival Lite

speech synthesis system. Festival Lite was

developed at the Carnegie Mellon University

(CMU), where it is known as Flite (Festival

Lite). It is a small, fast run-time open-source

text-to-speech synthesis (TTS) engine designed

primarily for small embedded machines and/or

large servers. Again, this TTS library is targeted

to be used within embedded platforms such as

the RasPi.

Mycroft was always designed to be modular,

enabling users to change its components. For

example, the eSpeakNG TTS library can be

substituted for Mimic if a user finds it more

appropriate.

named after Sherlock Holmes’s older brother but

instead after a fictional computer from Robert

Heinlein’s 1966 science fiction novel, The Moon

Is a Harsh Mistress, which I strongly recommend

that you read if you are sci-fi fan.

Mycroft Structure
Mycroft is designed to run on many different

platforms, which are called Devices in

Mycroft terminology. Different hardware

implementations that host Mycroft are

called Enclosures. The currently supported

Enclosures are

■n Mark 1. A software image of Mycroft

designed to be installed on the Mycroft Mark

1, a reference hardware device described in a

later section

■n Picroft. A software image of Mycroft

designed to be installed on the RasPi 3,

Model B

■n Android. A software image of Mycroft

designed to be installed on Android devices

Mycroft uses an open-source intent parser

called Adapt that converts natural language

into machine-readable data structures. An intent

parser is just a library for converting natural

language into machine-readable data structures,

such as JavaScript Object Notation (JSON).

It is lightweight and has been designed to run

on devices with limited computing resources,

such as embedded devices including the RasPi.

Adapt takes in natural language as an input and

outputs a data structure that includes

■n Intent. What the user is trying to do

■n Probability match. A measure of how

confident Adapt is that the intent has been

correctly identified

■n Tagged list of entities. Objects that are used

by Mycroft Skills to perform actions or

functions

07_Ch07.indd 130 2/1/19 1:56 PM

Chapter 7 n Mycroft and Picroft 131

Mycroft uses middleware, which is software

that is akin to an HA OS. This middleware has

two components:

■n Mycroft Core. This is Python code, which is

the core software that “glues” all the other

Mycroft modules together. The Mycroft

Core code is available from GitHub under its

open-source license.

■n Mycroft Home and Mycroft API. This is the

software infrastructure that holds all user

and device data. This infrastructure provides

high-level services, including storing API

keys, which are used to access third-party

services that provide Skill functionalities.

This code is considered proprietary by

Mycroft and has not been made available as

open source. This decision does not violate

the open-source license that Mycroft uses

to make the majority of its software freely

available.

I will not be discussing any further Mycroft

structural changes, but I will alerting you to the

fact that it can be done. The Mycroft software

was released using the Apache Foundation open-

source library. The important point to be made

is that both the Google and Amazon systems are

completely closed source, and users are not able

to make these types of changes to suit their own

situations.

Mycroft Hardware
The Mycroft project is not solely about open-

source software. The company does offer

hardware that runs its software. The first-

generation hardware released by the company

was the Mycroft Mark I shown in Figure 7-1.

Incidentally, this hardware is still available for

purchase, with the first units shipping in April

2016. All the company’s hardware is open source,

released under the CERN open hardware license.

The wake word is the word or phrase that a

user speaks to alert Mycroft that an utterance

will follow. Mycroft uses the PocketSphinx

technology developed by CMU for wake-word

detection. PocketSphinx is a lightweight version

of CMU’s larger speech-recognition package

named CMUSphinx. PocketSphinx is well suited

for embedded platforms just the way the other

Mycroft packages have been designed.

You may change the wake word from the

default “Hey mycroft” to anything phrase you

want by going to the home account website

at https://home.mycroft.ai/ and entering your

own phrase. There is a constraint on wake-

word selection that it must be in the English

language. Wake words in German, French,

Spanish, and so on will not work. However, the

Mycroft development team is currently working

on an open-source software package known as

Precise that will recognize any wake word in

any language. This is because Precise uses an

artificial neural network (ANN), which can be

trained to recognize any series of audio sounds.

Of course, this means that you must train Precise

to recognize your chosen wake word before

it can be used with Mycroft. It will still be a

while before Precise is made freely available for

use by the Mycroft open-source development

community.

Mycroft, like all the personal voice assistants,

has speech-to-text (STT) software, which is

used to take any user’s spoken words and turn

them into text phrases that can then be further

processed. Mycroft currently uses Google’s

STT, but this selection may be changed due to

Mycroft’s modular design. IBM’s Watson STT

can be substituted as well as Facebook’s wit.ai

SST package. Mycroft is planning on developing

its own open-source STT solution, which will be

named OpenSTT.

07_Ch07.indd 131 2/1/19 1:56 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

132 Home Automation with Raspberry Pi

of four USB ports as well as the RJ45 socket

belonging to the enclosed RasPi. The two RCA

phone jacks shown in the figure are for external

stereo audio, in case the internal speaker is

insufficient. There is also an HDMI socket for

an external monitor as well as a DC power

socket for an AC wall wart supply, which comes

with the unit.

Figure 7-3 is another view of the unit that

shows a large push button protruding from the

case top. The push button supports multiple

functions, some of which are discussed in a later

section detailing Mycroft Skills. In any case, a

detailed operational PDF guide on the Mark I is

available from the Mycroft website.

The company announced the Mark II

hardware project in early 2018. Figure 7-4 is a

photograph from the company’s Kickstarter

campaign. This next-generation hardware will

Some key technical specifications for the

Mark I unit are as follows:

■n Raspberry Pi 3, Model B

■n Built-in speaker

■n RCA audio output ports

■n 8 × 32 LED display

■n Dual NeoPixel “eyes”

■n Built-in WiFi (802.11B/G/N)

■n 10/100 Ethernet port, HDMI debug port, 4

USB ports, 40-pin GPIO connector

■n Integrated Arduino Mini

■n Enclosure with side-mount ports

■n U.S. power adapter

NOTE: The 40-pin connector has a different pinout than
an unmodified asPi. The RasPi’s built-in Bluetooth is also
disabled.

Figure 7-2 shows the back of the Mark I,

where you can clearly see the normal layout

 Mycroft Mark I.Figure 7-1

 Mark I back panel.Figure 7-2

 Oblique view of the Mark I.Figure 7-3

 Mark II prototype.Figure 7-4

07_Ch07.indd 132 2/1/19 1:56 PM

Chapter 7 n Mycroft and Picroft 133

clean Jessie Raspbian disk image. I would only

recommend the second approach for experienced

Linux developers who are confident in their

knowledge and ability to resolve any software

dependency issues.

The simplest way to install the Picroft

software is to load it in the form of a disk image

that is stored on a bootable micro SD card. The

instructions provided for writing a micro SD

card in Chapter 1 also apply to this installation.

The following steps should be done in the

sequence presented:

1. Boot the RasPi after you have burned the

Picroft disk image.

2. Connect to the WiFi SSID MYCROFT

using another computer on the same

network that is connected to the RasPi.

3. In a browser, go to the Web page

http://start.mycroft.ai. A list of WiFi

networks will be displayed. Select the WiFi

network that you want to connect to the

Picroft, and enter the passkey or passphrase

for that network.

NOTE: Picroft cannot connect to WiFi networks using
the 5-GHz band. This usually means that any network
with a “5G” in its name is not to be used. In addition,
2.4-GHz WiFi networks using channels 12 or 13
(2.467 and 2.472 GHz) cannot be used.

4. The Picroft software will proceed to

automatically connect to the Internet and

download a considerable amount of data.

Please be patient while this download takes

place. Once the download has finished, a

message will be displayed on the monitor

providing a registration website and a five-

or six-alphanumeric-character sequence

that you need to enter at the website.

The registration website that I used was

https://home.mycroft.ai/device. Yours may

be different because these installation

procedures do change occasionally. The

include a visual display, making it somewhat

akin to the Amazon Show unit. I am expecting

that this unit will likely be available in late 2018

or early 2019.

The company just announced another unit,

the Mark III, to be released in 2019. No further

details were available at the time of this writing

regarding the Mark III.

The preceding sections all concerned the

original Mycroft software and associated

hardware that runs that software. The next

sections discuss Picroft, which is Mycroft

designed for the RasPi.

Picroft
Picroft is the Mycroft software package designed

to function with an unmodified RasPi 3, Model

B. This is a logical extension for Mycroft because

the Mark I uses a RasPi 3, Model B, as its main

processor. I will next detail how to install Picroft,

configure it, and finally test it.

Picroft Installation

A complete set of Picroft installation

instructions is available at the Picroft website

(https://mycroft.ai/documentation/picroft/).

These instructions also include a list of all the

hardware needed for a RasPi Picroft installation.

These items are a RasPi 3, Model B, a USB

microphone and speaker(s), and the usual

desktop configuration accessories.

There are two ways to install Picroft on a

RasPi 3, Model B. The first way is the one I

describe in detail in this section and the one

that I highly recommend that you follow.

However, you can install and build Mycroft

from scratch using the instructions found at

the website https://mycroft.ai/documentation/

linux/-installing-via-git-clone. This installation

takes several hours and must be done using a

07_Ch07.indd 133 2/1/19 1:56 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

134 Home Automation with Raspberry Pi

The procedure I used for this configuration

change follows:

1. Find the proper USB identification for

the microphone. One way is to enter the

following command at a terminal prompt:

pactl list short sources

2. Edit the pulse audio file named default.pa.

It is in the directory /etc/pulse. My edit

consisted of changing one of the last two

lines in the file from set-default-source
input to set-default-source alsa_
input.usb-Samson_Technologies_
Samson_C01U-00-C01U.analog-stereo.

The last portion of the line came from the

pactl command

3. Reboot the RasPi to allow the configuration

change to take effect.

I found that the Picroft functioned as expected

after I enabled the USB microphone. I tested

the system by speaking this phrase: “Hey Mycroft,

what time is it?” The response was both spoken

and displayed on the Picroft log screen, as shown

in Figure 7-5.

Configuring Mycroft

I would like you to perform a simple experiment

before I explain how to configure the Mycroft

software. Ask Mycroft the following: “Hey

Mycroft, what is my location?” The answer will

likely startle you, as it did me. The response both

in text and spoken was: “I’m in Fredonia Kansas

United States.”

This is a very strange response at first glance

until you realize that the location is hardcoded

into the Mycroft configuration file and also takes

location data from the Mycroft home website

(https://home.mycroft.ai/). The basic Mycroft

configuration file is named mycroft.conf and is

stored at

registration character sequence will also be

repeatedly spoken through the USB speaker.

Mycroft refers to this process as pairing, not

to be confused with Bluetooth pairing.

5. The next step is to set up an SSH link

with the RasPi. There are several ways to

accomplish this task:

a. Go to your WiFi router’s admin login,

and examine the attached wireless

devices and try to determine your

RasPi’s IP address. Use this IP address

to connect to the RasPi per the SSH

instructions provided in Chapter 6.

Please note that the password for

SSH login is “mycroft” not the usual

“raspberry.”

b. Go to the Mycroft documentation

website https://mycroft.ai/

documentation, and read about how

to add the IP address. Then speak

the phrase “Hey Mycroft, what’s your IP

address?” The response both spoken and

on the screen should be “Here are my

available IP addresses: wlan IP address …

Those are all my available IP addresses.”

A word of caution is in order here; this

procedure may not work because your

USB microphone may not be enabled.

I will shortly discuss how to enable the

USB microphone.

c. Press CTRL-C to exit Picroft and get to a

terminal prompt on the RasPi monitor.

Then enter the command ifconfig, and

the current IP address will be shown

in the wlan0 section. You will have to

reboot the RasPi to restart Picroft.

At this point, you should have fully functional

Picroft system. However, I found that my USB

microphone still was not working properly with

the software. This situation required me to make

a configuration change to the pulse audio system

that Picroft uses for its audio sinks and sources.

07_Ch07.indd 134 2/1/19 1:56 PM

Chapter 7 n Mycroft and Picroft 135

The Fredonia word came from the Location

textbox entry from the home website, as shown

in Figure 7-6. This entry became an override

for the Lawrence name shown in the basic

configuration file.

/opt/venvs/mycroft-core/lib/python3.4/
 sitepackages/mycroft/configuration/

mycroft.conf

And yes, that location has eight directory levels

to it, not the easiest to find. The configuration

file has four sections, which are loaded in the

following progression:

■n DEFAULT

■n REMOTE

■n SYSTEM

■n USER

Because the USER level is the last to be

loaded, it can always override any settings or

configurations loaded by any one of the prior

levels. The following listing was extracted from

the DEFAULT section of the configuration

file. In this listing, you can clearly see where the

Kansas and United States locations came from.

 Picroft log screen for the utterance “Hey Mycroft, what time is it?”Figure 7-5

 Location entry from the Device page in
the home account.

Figure 7-6

07_Ch07.indd 135 2/1/19 1:56 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

136 Home Automation with Raspberry Pi

application. You will be able to both read from a

GPIO port by detecting a pushbutton press and

write to it by lighting a LED.

Follow this sequence of steps to download

and install the GPIO skill:

1. Use a computer on the local network and

go to the GitHub webpage at https://github.

com/MycroftAI/picroft_example_skill_gpio.

Download and extract the zip file from this

page. This will create a directory named

picroft_example_skill_gpio_master on the

computer.

2. Make an SSH connection to the RasPi

loaded with the Picroft software.

3. Transfer the new directory to the RasPi.

If you are using a Mac or Linux terminal

window, then the command is similar to this

one that I used:

scp -r ./Desktop/picroft_example_skill_
gpio-master pi@192.168.1.29:picroft_
example_skill_gpio-master

4. Stop the Mycroft server if it is running

on the RasPi, which will cause a terminal

prompt to be displayed.

5. Enter the following commands:

cd picroft_example_skill_gpio_master
sudo nano Makefile

■n Edit the Makefile so that the IP address

displayed everywhere in the editor is the

RasPi IP address.

■n Press CTRL-O and CTRL-X to save and exit

the editor.

6. cd /opt/mycroft/skills

7. mkdir skill-gpio

8. cd ~/picroft_example_skill_gpio_
master

9. make install.pi

// Location where the system resides
// NOTE: Although this is set here, an
// Enclosure can override the value
// For example a mycroft-core running in
// a car could use the GPS.
// Override: REMOTE
"location": {
 "city": {
 "code": "Lawrence",
 "name": "Lawrence",
 "state": {
 "code": "KS",
 "name": "Kansas",
 "country": {
 "code": "US",
 "name": "United States"
}

}

 },
 "coordinate": {
 "latitude": 38.971669,
 "longitude": -95.23525
 },
 "timezone": {
 "code": "America/Chicago",
 "name": "Central Standard Time",
 "dstOffset": 3600000,
 "offset": -21600000
}

}

Mycroft GPIO Skill
Mycroft Skills are add-ins or plug-ins that

provide additional functionality to the Mycroft

software package. Skills have been developed

by both Mycroft company developers and

open-source Mycroft community developers

and vary greatly in their functionality and

maturity. Hopefully, you will be able to develop

your own custom Skill after becoming familiar

with Mycroft development and experimenting

with this particular Skill. I chose the GPIO

Skill because it adds an important function

to Mycroft, allowing a user to directly control

RasPi GPIO pins in support of an HA

07_Ch07.indd 136 2/1/19 1:56 PM

Chapter 7 n Mycroft and Picroft 137

cd ~/picroft_example_skill_gpio-master
make test.pi

I used an SSH session to build the test script

test.pi. After the build process finished, the

LED slowly started blinking for approximately

10 seconds. You should also press the push

button sometime within that same 10-second

interval. Figure 7-8 shows the output generated

by the GPIO.py Python script that runs during

this test.

The script shows the continuous LED status

while the script ran. The LED logical name in

the script is GPIO1, and the status is either On

or Off. The push button logical name is Button,

and its status is either Pressed or Released.

You will probably notice that there are multiple

occurrences of Pressed and Released for the

push button operations. In reality, I only pressed

and released the button one time. The multiple

recorded button states are due to the fast polling

taking place in the script.

10. cd /opt/mycroft/skills/

11. sudo chown mycroft:mycroft -R
skill-gpio

12. sudo adduser pi mycroft

13. sudo adduser mycroft gpio

At this point, the GPIO Skill should be ready

for a test. However, you will now need to set up

the test circuit.

GPIO Test Circuit

Figure 7-7 is a Fritzing diagram that shows the

test circuit to be used for the initial GPIO Skill

demonstration.

Test Run

The test run involves two phases. The first

one is the direct programmatic control of the

hardware attached to the RasPi GPIO pins. This

will be accomplished by issuing the following

commends either at the RasPi terminal prompt

or using an SSH session:

 Fritzing diagram for GPIO test circuit.Figure 7-7

07_Ch07.indd 137 2/1/19 1:56 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

138 Home Automation with Raspberry Pi

discussed. I provide a list of these Skills and

some further explanations of the more useful or

interesting ones in the next section.

Mycroft Skills
Table 7-1 details all the available Skills in the

downloaded disk image included with the GPIO

Skill that was discussed in the preceding section.

Most of the table description content is based

on the README.md file found in every Skill

directory.

Philips Hue Skill
It is reasonably easy to add an HA Skill to the

Picroft system. I selected a Philips Hue Skill that

can turn on and off a white Hue light, which I

had demonstrated in Chapter 5. This Skill was

created by Christopher Rogers and is available

The second phase for testing involves using

voice control with the Mycroft service operating.

Speak the following phrases to test GPIO

control:

■n “Hey Mycroft, turn LED on.”

■n “Hey Mycroft, turn LED off.”

■n “Hey Mycroft, blink LED.”

The system will respond by turning the LED on,

then off, and finally, blinking it. It also will speak

the responses, such as

■n “The LED is on.”

■n “The LED is off.”

These responses are continually repeated for

the blink operation. In fact, the only way I

could stop the blinking was to use a keyboard

interrupt (CTRL-C) to stop the Mycroft server.

An additional 26 skills are provided with the

disk image in addition to the GPIO Skill just

 GPIO test diagram.Figure 7-8

07_Ch07.indd 138 2/1/19 1:56 PM

Chapter 7 n Mycroft and Picroft 139

Table 7-1 Available Mycroft Skills

Skill Name Description

skill-alarm Set daily alarms, recurring alarms, or one-time alarms with Mycroft.
skill-audio-record Audio functions: record, play, stop, and cancel.
skill-configuration Change the technology used to perform wake-word spotting, the system that

wakes the device up when you say “Hey Mycroft.”
skill-date-time Get the local time or time for major cities around the world. Times are given in

12-hour (2:30 pm) or 24-hour format (14:30) based on the Time Format setting at
https://home.mycroft.ai/#/setting/basic.

skill-gpio Demonstrates interacting with the RasPi GPIO pins. Read from a GPIO pin
(detecting a button press) and write to one (lighting an LED).

skill-hello-world Usage: “Hello world,” “How are you?,” and “Thank you.”
skill-installer Add and remove Skills using the Mycroft Skill Manager (MSM). Install a Skill

verbally by saying “Install <skill identifier>” where <skill identifier> is the full
name or at least an adequate subset of the name to uniquely identify the Skill.

skill-ip Retrieve the network address (aka Internet Protocol [IP] address) to which the
Mycroft device is connected.

skill-joke Brighten your day with a little humor. This draws on the jokes collected by the
PyJokes project (https://github.com/pyjokes/pyjokes) to give you a chuckle. The
joke categories are:
Neutral: jokes that are safe for work, kids, or your grandmother.
Adult: nothing horrible, but be ready to cover some ears.
Chuck Norris: jokes only a geek can love.

skill-mark1-demo The Mycroft Mark 1 menu, which appears when you press and hold the top
button, has a “demo” option. This Skill implements a simple mode that can be
used to draw attention at trade shows, stores, etc. The demo starts with the unit’s
eyes dancing around. Every two minutes it will sing a song. The singing is synched
to the clock, so multiple units can form a chorus. You can stop the demo by
pressing the top button or saying “Stop.”

skill-naptime Tell Mycroft to sleep when you don’t want to be disturbed in any way. This stops
all calls to the Speech-to-Text system, guaranteeing that your voice won’t be sent
anywhere on an accidental activation. When sleeping, Mycroft will only listen
locally for the phrase “Hey Mycroft, wake up.” Otherwise, the system will be totally
silent and won’t bother you. On a Mark 1, this also dims the LED eyes.

skill-npr-news Plays the latest news from a configu able RSS-based audio feed. By default, the
NPR hourly news broadcast is used, but you can choose from other news feeds,
including BBC, AP, CBC, CNN, PBS, and Fox. See the setting at https://home.
mycroft.ai/#/skill.

skill-pairing The default back-end to provide services for Mycroft users is https://home.
mycroft.ai/. Pairing a device with Home provides access to privacy-protecting
Speech-to-Text, Wolfram Alpha, and other such services, as well as easy
configu ation for all your Mycroft devices.

(continued on next page)

07_Ch07.indd 139 2/1/19 1:56 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m

140 Home Automation with Raspberry Pi

Skill Name Description

skill-personal This Skill will answer some of the personality questions relating to Mycroft, such
as “What are you?,” “Where were you born?,” and “Who made you?.”

skill-playback-control This Skill doesn’t do anything by itself, but it provides an important common
language for many audio playback skills. By handling simple utterances such
as “Pause,” this one Skill can turn around and rebroadcast the message bus
command mycroft.audio.service.pause. This lets several music services share the
common “Pause” terminology.

skill-reminder Usage: “Remind me to search about AI in 10 minutes.”
skill-singing Usage: “Sing.” There are fi e mp3 songs in the skill directory.
skill-speak Turn Mycroft into a parrot. Speak a phrase and listen to it repeated in Mycroft’s

dulcet voice! Examples: “Say Goodnight, Gracie”; “Repeat Once upon a midnight
dreary, while I pondered, weak and weary, Over many a quaint and curious
volume of forgotten lore”; “Speak I can say anything you’d like!”

skill-spelling Usage: “Spell Mycroft.”
skill-stock Usage: “Stock price of Google,” “trading at Google.”
skill-stop Usage: “Stop.”
skill-support Generate a package with debugging information and have it sent to your

registered account. You can use this packet to debug issues yourself, or it can be
sent on to the support team. This Skill uses the http://termbin.com/ service for
storing the debugging information.
Examples: “Create a support ticket,” “You’re not working!,” “Send me debug info.”

skill-version-checker Report the version of your Mycroft install (mycroft-core) and of the platform
you are running on (e.g., “Mark 1, build 10”). Examples:
“Check version,” “What version are you running?,” “What’s your platform build?”

skill-volume Control the volume of Mycroft with verbal commands or by spinning the physical
button on a Mark 1. Examples: “Turn up the volume,” “Decrease the audio,” “Mute
audio,” “Set volume to 5,” “Set volume to 75 percent.”

skill-weather Get weather conditions, forecasts, expected precipitation, and more! By default, it
will tell you about your default location, or you can ask for other cities around the
world. Current conditions and weather forecasts come from Open Weather Map
at https://openweathermap.org. For devices with screen support, conditions are
briefly sh wn. Examples: “What is the weather?,” “What is the forecast tomorrow?,”
“What is the weather going to be like Tuesday?,” “What is the weather in San
Francisco?,” “When will it rain next?,” “How windy is it?,” “What’s the humidity?”

skill-wiki Query www.wikipedia.org for answers to all your questions! Get just the summary,
or ask for more to get in-depth information. Examples: “Tell me about Elon Musk,”
“Tell me about beans,” “Check Wikipedia for beans,” “Search for water.”

Table 7-1 Available Mycroft Skills (continued)

07_Ch07.indd 140 2/1/19 1:56 PM

Chapter 7 n Mycroft and Picroft 141

On your first run, if you did not supply a

username, when you say any phrase that gets

routed to this Skill (i.e., “Turn off y lights”), you

will be asked to push the button on the top of

your Philips Hue hub. This will create a user on

the hub for this application.

Save and exit the nano editor, and restart

the Mycroft server for the new configuration

changes to take effect.

I provided both the Hue bridge IP address

and username. The system turned on the Hue

light when I spoke the phrase “Hey Mycroft, turn
on the workplace light.”

This result confirmed that the Mycroft Hue

Skill was working correctly and that I had

successfully created a simple HA application

for the Mycroft system. You can add similar

HA Skills following the same procedure I just

detailed. Additional HA skills are continually

being added to the Mycroft Skills repository by

the open-source community developers.

Summary
The chapter began with an introduction to the

Mycroft, which is a completely open-source

artificial intelligence (AI) project involving a

personal voice assistant. I examined its structure

and supporting hardware. The Mycroft team

offers a hardware device for sale named Mark I

that contains a RasPi 3 that hosts the Mycroft

software package. The open-source Mycroft

software can also be installed on your RasPi

3, in which case it is known as Picroft. Finally,

there is a Mycroft version that can be hosted on

Android devices.

I reviewed how to install Mycroft on a RasPi.

In the process of this installation, I uncovered

and resolved an issue in which the software did

not discover the USB microphone. I successfully

demonstrated that the Picroft installation

worked as expected.

from GitHub at the website

https://github.com/ChristopherRogers1991/

mycroft-hue. You can directly clone and install it

by entering the following commands, assuming

that you have git already installed:

cd /opt/mycroft/skills
sudo git clone https://github.com/
 ChristopherRogers1991/mycroft-hue
sudo apt-get install python3-pip
cd mycroft-hue
sudo pip3 install -r requirements.txt

The next part of this Skill installation

process is to add some information to the basic

mycroft.conf file concerning the specific Hue

device to be controlled. Enter the following to

change Mycroft’s configuration to recognize the

Hue light:

cd /opt/venvs/mycroft-core/lib/python3.4/
 sitepackages/mycroft/
configuration/mycroft.conf
sudo nano mycroft.conf

Enter this text into the middle of the Skills

configuration section:

...
"PhilipsHueSkill": {
 "ip": "",
 "username": "",
 "verbose": false,
 "brightness_step": 50,
 "color_temperature_step": 1000,
 "default_group": 0
 },
```

NOTE: If you know the IP address of your hub and/or if 
you have a username that you would like to use, you may 
add either or both to the preceding relevant lines. If not, 
when the Skill is first use , it will attempt to find the hu  
on your network. If there are multiple hubs, it will take the 
first one it finds and will eate a default user and record 
the IP address.

07_Ch07.indd   141 2/1/19   1:56 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



142      Home Automation with Raspberry Pi

different Mycroft Skills followed the GPIO skill 

discussion.

The chapter concluded with an HA Skill 

installation using a Philips Hue light. The light 

was turned on and off  using voice commands.

The subject of Mycropft Skills was discussed 

next, and a Mycroft GPIO Skill was installed 

on the RasPi. A simple test using both a LED 

and a push button proved that the skill was 

installed successfully. A detailed review of 26 

07_Ch07.indd   142 2/1/19   1:56 PM



C H A P T E R  8

Fuzzy Logic and 
Home Automation

143

THIS CHAPTER WILL SHOW HOW to apply fuzzy 

logic (FL) concepts in an HA system. I will take 

a practical approach in the discussions using the 

RasPi in FL demonstrations while constantly 

introducing and explaining the different 

concepts and components that constitute an FL 

system. 

A Simple HVAC FL System
This section concerns a very basic HVAC system 

that uses an FL controller that can only operate 

in either a heating or cooling mode. This is a 

deliberate oversimplification of a real-world 

system that allows me to more easily explain 

how FL can be integrated into a practical HA 

system. 

Figure 8-1 is block diagram of an HVAC 

system that employs a traditional feedback 

control scheme. The entire system, as it is shown 

in the figure, is known as a plant using control 

system terminology. This configuration or 

topology is known as feedback control because a 

sensor in the living space measures the ambient 

room temperature, which the controller then 

uses to compare against a set point or target 

temperature. If  the sensor temperature is higher 

than the target temperature, a cooling command 

is sent to the HVAC system; otherwise, a heating 

command is sent. In reality, there is a limited 

temperature region where neither heating nor 

cooling commands are sent. This is the comfort 

zone, where users in the living space require 

no interaction with the HVAC system. The FL 

system will handily incorporate a comfort zone.

The FL controller (FLC) replaces the 

traditional feedback controller in the plant. 

It also requires a temperature sensor, but 

the decision process about choosing heating, 

Parts List

Item Model Quantity Source

RasPi 3 B 1 adafruit.com
amazon.com
mcmelectronics.com

LED Commodity 4 adafruit.com

330-ohm (Ω), 1⁄8-watt (W) resistor Commodity 4 adafruit.com

08_Ch08.indd   143 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



144      Home Automation with Raspberry Pi

Figure 8-2 shows a graph of a membership 

function in which the vertical axis represents 

membership in the range of 0 to 1.0 and 

temperature on the horizontal axis. A value of 

1.0 at a given temperature means that it is equal 

to 100 percent membership within the function. 

Likewise, a temperature of 60°F intersects at a 

0.5 membership function value, which translates 

to that specific temperature having a 50 percent 

membership function. This graph represents the 

translation of the plant temperature variable to 

the FL comfortable temperature linguistic term. 

Other membership functions can be similarly 

created to encompass the following linguistic 

terms:

■n Cold 

■n Comfortable

■n Hot

It would be useful at this point to slightly 

change the traditional HVAC system design to 

one that incorporates an FLC. Figure 8-3 shows 

a generic FL HVAC system that incorporates 

cooling, or none is significantly different from a 

simplistic comparison with a single target value.

It will be useful at this point to first discuss 

some fundamental FL concepts before 

proceeding with an FLC demonstration.

Basic FL Concepts
FL uses the phrase linguistic terms to describe 

system or plant variables that originate in 

the non-FL domain. To understand what 

linguistic terms means, it is useful to think 

of how you would describe a comfortable 

room temperature. You might say 72°F is 

comfortable. However, someone else might say 

that 70°F is uncomfortable. In fact, it is entirely 

possible to survey a large, randomly selected 

group of people and discover that comfortable 

temperatures could range from 50 to 90°F. 

Admittedly, there would be very few people 

who would find the extreme temperatures to be 

comfortable. 

 Traditional HVAC system block diagram.Figure 8-1

HVAC System

Heat Command Cool Command

Heating

Cooling

Controller
(Thermostat)

Living Space

Sensor

08_Ch08.indd   144 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      145

FL Implementation Procedure
This implementation procedure creates an 

FL algorithm, which is a step-by-step process 

encompassing all the necessary components 

to generate a workable FL solution. Table 8-1 

shows the seven major steps involved in creating 

an FL algorithm. I will explain each step in-

depth after the table.

a new component—a control subsystem. 

The control subsystem block represents the 

additional hardware/software required to 

implement any new HVAC features resulting 

from using an FL approach.

There is a very specific procedure to be 

followed to implement an FL system, which is 

discussed in the next section.

 Comfortable temperature membership function.Figure 8-2

 Generic FLC HVAC block diagram.Figure 8-3

Comfortable

Input Variable Value

D
eg

re
e 

of
 M

em
be

rs
hi

p

1.0

0.8

0.6

0.4

0.2

0.0

50 60 70 80 90

HVAC System

Heating

Cooling

Fuzzy Logic ControllerControl
Subsystem Target Temperature

Living Space

Sensor

08_Ch08.indd   145 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



146      Home Automation with Raspberry Pi

which is the command that goes to the control 

subsystem.

The room temperature input variable is 

further classified (decomposed) into a series of 

linguistic terms that are appropriate for the users 

and the HVAC environment:

■n Cold 

■n Comfortable

■n Hot 

The controlOut output variable is further 

classified (decomposed) into a series of linguistic 

terms that are appropriate for the HVAC control 

subsystem:

■n Heat

■n No action

■n Cool

STEP 2. Membership functions are prerequisites 

for both the fuzzification and defuzzification 

steps. Membership functions map nonfuzzy 

input values to fuzzy linguistic variables for 

the fuzzification step. In a similar manner, a 

membership function maps fuzzy variables to 

nonfuzzy output values for the defuzzification 

step. Basically, membership functions 

quantify linguistic terms. Figure 8-4 shows 

Table 8-1 Fuzzy Logic Algorithm Steps

Step Step Name Step Description

1 Initialization Define FL linguistic
variables and terms

2 Initialization Generate membership 
functions

3 Initialization Create expert rule set

4 Fuzzific tion Convert crisp input data 
into fuzzy set using 
membership functions

5 Inference Evaluate fuzzy set 
according to expert rule 
set

6 Aggregation Combine rule results to 
form a fuzzy output set

7 Defuzzific tion Convert fuzzy output set 
to crisp output values

STEP 1. The linguistic variables are symbols 

that represent system inputs and outputs. They 

are not numerical values but are usually natural-

language words or phrases from a language 

such as English. Linguistic variables are further 

decomposed into a set of linguistic terms for 

both inputs and outputs. There is only one 

input variable, which is named roomTemp for 

this simple HVAC demonstration. There is also 

only one output variable, named controlOut, 

Comfortable HotCold

Input Variable Value

D
eg

re
e 

of
 M

em
be

rs
hi

p

1.0

0.8

0.6

0.4

0.2

0.0

50 60 70 80 90

 roomTemp membership functions.Figure 8-4

08_Ch08.indd   146 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      147

1. If  (roomTemp is cold) and (targetTemp is 

comfortable), the controlOut command 

is heat. 

2. If  (roomTemp is hot) and (targetTemp 

is comfortable), then the controlOut 

command is cool. 

3. If  (roomTemp is comfortable) and 

(targetTemp is comfortable), then the 

controlOut command is no-action.

These three rules apply both to the input and the 

output variables. How the rules are enforced is 

discussed in step 5. 

STEP 4. This step requires that the crisp 

roomTemp input variable be fuzzified using 

the previously defined membership functions. 

How this happens depends on the computer 

language/library used in the actual FL system 

implementation. I will be using the Python 

language along with the Python SK library for 

this simple HVAC demonstration. I will provide 

detailed comments on the fuzzication process 

within the code listing when it is shown later in 

this chapter.

the membership function graphs for the input 

variable roomTemp, which encompasses all the 

linguistic terms assigned to the input variable.

There can be many basic shapes to 

membership functions, but the triangular shape 

seems to be quite common, at least when it 

comes to capturing human behavior associated 

with the input variable.  

Figure 8-5 is a graph showing the control 

output membership functions encompassing 

all three linguistic terms comprising the 

controlOut output variable. This figure has 

triangular membership function shapes, which is 

fairly common when configuring output control 

functions.

STEP 3. A very important component in any FL 

system is an expert decision system. The purpose 

of the expert system is to generate appropriate 

control actions based on the fuzzified input 

variables. The expert system uses the classic 

modus ponens form if <condition>, then 

<conclusion>, where decisions are based on the 

state or value of input variable(s). The following 

are the rules implemented for this simple HVAC 

demonstration:

No Action CoolHeat

Input Variable Value

D
eg

re
e 

of
 M

em
be

rs
hi

p

1.0

0.8

0.6

0.4

0.2

0.0

50 60 70 80 90

 controlOut membership functions.Figure 8-5

08_Ch08.indd   147 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



148      Home Automation with Raspberry Pi

membership value for both the comfortable 

and the hot membership functions. In a case 

such as this, you would have to provide some 

sort of tie-breaker function to select one 

linguistic term over another. It probably doesn’t 

make much of a difference regarding which 

term is selected, but I would likely favor the 

no-action mode versus the cool mode, just to 

economize on energy consumption.

The aggregation step is next, where all the 

rules have been applied to all the membership 

functions. 

STEP 6. The maximum operator is normally 

applied to the output variable membership 

functions for this aggregation step. Figure 8-6 

shows the combined output variable graph, 

which encompasses all three control modes.

There is only one more step in the FLS 

algorithm, and that is defuzzification.

STEP 7. Defuzzification is the process in which 

a real-world crisp output value is generated that 

can be acted on using the appropriate mode 

decided by the expert system. The following six 

mathematical techniques are commonly used for 

defuzzification:

■n Centroid of area 

■n Bisector of area

■n Smallest of maximum

■n Largest of maximum

■n Mean of maximum

■n Weighted average

Figure 8-7 graphically demonstrates how 

values for each method are chosen using an 

arbitrary aggregation membership function.

The centroid defuzzification method is used 

most commonly because it is very accurate. It 

STEP 5. This step is all about applying the if, 

then inferential rules and paying attention to 

using only related linguistic terms. For instance, 

rule 1 is

If  (roomTemp is cold) and (targetTemp is 

comfortable), the controlOut command is 

heat.

Applying this rule is trivial because there is 

only one input linguistic term that needs to be 

evaluated. You will see that rule application 

becomes more complex when additional 

linguistic terms are simultaneously evaluated. 

I will explain later the complex evaluations in 

the complex HVAC demonstration. For right 

now, this simple demonstration only relies on 

a one-to-one rule application. For example, if  

the targetTemp input variable is at 55°F, then, 

referring to Figure 8-4, you can see that the cold 

membership function value is approximately 

0.7 and the comfortable membership function 

value is approximately 0.3. The highest or 

maximum membership value is always used 

when there are two membership functions being 

evaluated for a single crisp input variable. This 

means that the action associated with the cold 

membership function will be acted on using a 

0.7 value for an action level to be applied to 

the HVAC heating mode. I will further expand 

on what I mean by an action level when I go 

through the complex HVAC example. For right 

now, simply construe the level to equate to an 

approximate 70 percent output variable level.

You should also easily see that an input 

roomTemp of  70°F would mean that it equates to 

a 1.0 comfortable membership, which causes 

the no-action mode to be entered for the 

HVAC system. 

A final example of an input roomTemp 

of  80°F would mean that it equates to a 0.5 

08_Ch08.indd   148 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      149

The mean-of-maximum (MOM) defuzzification 

method uses the average value of the aggregated 

membership function outputs:

z
0
 5 ∑n

i = 1

v
i

 
n

The smallest-of-maximum defuzzification 

method uses the minimum value of the 

aggregated membership function outputs:

z
0
e{x |µ(x) 5 min µ(v)

The largest-of-maximum defuzzification method 

uses the maximum value of the aggregated 

membership function outputs:

z
0
e{x |µ(x) 5 max µ(v)}     

calculates the center of the area under the curve 

of the membership function. This method can 

require significant computational processing, 

especially for complex membership functions. 

The centroid equation is

z
0
 5 ∫µ

i
(x)xdx / ∫µ

i
(x)dx

where z
0
 is the defuzzified output, µ

i
 represents 

a membership function, and x is an output 

variable. Bisector defuzzification uses vertical 

lines that divide the area under the membership 

curve into two equal areas where

∫
a

zµ
A
(x)dx 5 ∫

z
bµ

A
(x)dx

Combined Output Variable

D
eg

re
e 

of
 M

em
be

rs
hi

p

1.0

0.8

0.6

0.4

0.2

0.0

50 60 70 80 90

 Combined output variable graph.Figure 8-6

 Defuzzific tion methods.Figure 8-7

Output Variable Value

D
eg

re
e 

of
 M

em
be

rs
hi

p

1.0

0.8

0.6

0.4

0.2

0.0

50 60 70 80 90

Total Area

Smallest of Max

Largest of Max

Centroid of Area
Bisector of Area
Mean of Max

08_Ch08.indd   149 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



150      Home Automation with Raspberry Pi

■n Variable display. controlOut numeric value.

You will first need to do some configurations 

and install some Python libraries in preparation 

to enter and run the script. Enter the following 

commands at the command line to update the 

Raspbian distribution and install the numpy, 

scipy, and matplotlib libraries:

sudoapt-getupdate

sudoapt-getinstallpython-numpy

NOTE: The numpy library may already be installed, so all 
you will see is a message stating that the latest version is 
already installed.

sudoapt-getinstallpython-scipy

sudoapt-getinstallpython-matplotlib

The skfuzzy library, which contains all the 

Python fuzzy software, is somewhat more 

complex to install. You first need to clone the 

software from the GitHub website (https://

github.com/scikit-fuzzy/scikit-fuzzy.git). 

However, you will need the git application to do 

this. Install git by entering this command:

sudoapt-getinstallgit

You will then need to clone the skfuzzy software 

once git is installed by entering this command:

sudogitclonehttps://github.com/

scikit-fuzzy/scikit-fuzzy.git

The cloning operation automatically unzips all 

the skfuzzy software into a new subdirectory 

named scikit-fuzzy located in the Home 

directory. Enter the following commands to set 

up the skfuzzy library:

cdscikit-fuzzy

sudopythonsetup.pyinstall

You will see a lot of dialog scroll by as the 

skfuzzy installation progresses. You should be 

The weighted-average defuzzification method 

calculates the weighted sum of each fuzzy set. 

The crisp value is set according to the weighted 

values and the degree of membership for fuzzy 

output as determined by the following formula:

z
0 
5

 ∑µ(x)
i
W

i

 ∑µ(x)
i

where  is the degree of membership in output 

singleton i, and W
i
 is the fuzzy output weight 

value for the output singleton i.

The defuzzification step completes the 

seven-step discussion of how to create an FL 

solution. The next section is a presentation of a 

complete Python solution for the simple HVAC 

demonstration.

Python Script for a Simple  
HVAC System

The initial step when creating a new program 

or script is to list the requirements or what 

is expected or desired to happen when the 

program is run (executed). Accurately specifying 

requirements is a key factor in how you can 

determine whether you have been successful 

in generating a workable problem and/or 

project solution. After careful consideration, 

I developed the following requirements for a 

Python script that would accurately simulate a 

simple HVAC system:

■n Two input variables. roomTemp for the actual 

room temperature, and targetTemp for the 

desired or set-point temperature.

■n One output variable. controlOut to send 

a defuzzified numeric value to a simulated 

control subsystem.

■n LED displays. Three LEDs that indicate 

the output modes of heat, cool, and no-

action.

■n Keyboard entries. roomTemp and 

targetTemp.

08_Ch08.indd   150 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      151

5. If  roomTemp is hot and targetTemp is 

cold, then controlOut is cool.

6. If  roomTemp is hot and targetTemp is 

comfortable, then controlOut is cool.

Table 8-2 is a summary matrix detailing the 

control commands for all combinations of 

linguistic variables for both room and target 

temperatures. 

Table 8-2 Matrix of Command Actions for Room 
and Target Temperature Linguistic Variables

Room 
Temperature
(roomTemp)

Target Temperature
(targetTemp)
cold comfortable hot

cold no-action heat heat

comfortable cool no-action heat

hot
cool cool no-

action

At this point, it is time to discuss the 

fuzzification step, once the rule set has been 

generated.

Fuzzification

The following Python code segment sets up the 

input variable ranges and the input and output 

membership functions:

ready to enter and execute fuzzy Python scripts 

after the installation completes.

The following sections all concern going 

through the seven FL implementation steps. 

Just note that I did not follow the step order 

described in Table 8-1. It is not critical that the 

steps be done in any specific order but only that 

they all are eventually completed.

Generating the Expert System Rules

Six rules are required to accommodate all the 

combinations of room temperature and target 

temperature linguistic terms that require an 

action. All the rules for no-action are ignored.  

These six rules are as follows:

1. If  roomTemp is cold and targetTemp is 

comfortable, then controlOut is heat.

2. If  roomTemp is cold and targetTemp is 

hot, then controlOut is heat.

3. If  roomTemp is comfortable and 

targetTemp is cold, then controlOut is 

cool.

4. If  roomTemp is comfortable and 

targetTemp is hot, then controlOut is 

heat.

importnumpyasnp

importskfuzzyasfuzz

#Generateuniversevariables

#roomandtargettemperaturerangeis50to90

#samefortheoutputcontrolvariable

room_temp=np.arange(50,91,1)

target_temp=np.arange(50,91,1)

control_temp=np.arange(50,91,1)

#Generatetriangularfuzzymembershipfunctions

room_temp_lo=fuzz.trimf(room_temp,[50,50,70])

room_temp_md=fuzz.trimf(room_temp,[50,70,90])

room_temp_hi=fuzz.trimf(room_temp,[70,90,90])

target_temp_lo=fuzz.trimf(target_temp,[50,50,70])

08_Ch08.indd   151 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



152      Home Automation with Raspberry Pi

the target temperature would be set manually, 

whereas the room temperature would be read 

from a sensor. However, to simply things in this 

simple project, both inputs will be set manually. 

The following code accepts user inputs and then 

fuzzifies those inputs:

The next step in the algorithm is to determine 

the fuzzified values based on values for room 

and target temperatures. Based on project 

requirements, the user will be asked to input 

both values. In a real-world FL control system, 

target_temp_md=fuzz.trimf(target_temp,[50,70,90])

target_temp_hi=fuzz.trimf(target_temp,[50,90,90])

control_temp_lo=fuzz.trimf(control_temp,[50,70,90])

control_temp_hi=fuzz.trimf(control_temp,[70,90,90])

#Getuserinputs

room_temp_in=raw_input('Enterroomtemperature50to90')

target_temp_in=raw_input('Entertargettemperature50to90')

#Calculatedegreesofmembership

room_temp_level_lo = fuzz.interp_membership(room_temp, room_temp_lo, float(room_temp_in))
room_temp_level_md = fuzz.interp_membership(room_temp, room_temp_md, float(room_temp_in))
room_temp_level_hi = fuzz.interp_membership(room_temp, room_temp_hi, float(room_temp_in))

target_temp_level_lo=fuzz.interp_membership(target_temp,target_temp_lo,

   float(target_temp_in))
target_temp_level_md=fuzz.interp_membership(x_target_temp,target_temp_md,

   float(target_temp_in))
target_temp_level_hi=fuzz.interp_membership(x_target_temp,target_temp_hi,

   float(target_temp_in))

The next step is the inference step, where all 

the rules are applied and membership functions 

combined.

Inference

The following code segment applies the six rules 

and combines all the membership functions:

#Applyrule1:ifroom_tempiscoldandtargettempiscomfortablethencommandisheat

#The'and'operatormeanstotaketheminimumbyusingthe'np.fmin'function

active_rule1=np.fmin(room_temp_level_lo,target_temp_level_md)

#Combinewithhicontrolmembershipfunctionusing'np.fmin'

control_activation_1=np.fmin(active_rule1,control_temp_hi)

# Next iterate through all five remaining rules
#Applyrule2:ifroom_tempiscoldandtargettempishotthencommandisheat

active_rule2=np.fmin(room_temp_level_lo,target_temp_level_hi)

#Combinewithhicontrolmembershipfunctionusing'np.fmin'

control_activation_2=np.fmin(active_rule2,control_temp_hi)

08_Ch08.indd   152 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      153

Defuzzification

The centroid method will be used for this 

project. The following code defuzzifies the 

output control value:

# Calculate defuzzified result using the 
#methodofcentroids

control_value=fuzz.defuzz(control_temp,

aggregated,'centroid')

Now simply display the crisp output value.

printcontrol_value

Simple HVAC System Python Script

The following is the complete listing for an initial 

Python script that I named simpleHVAC.py. It is 

a compilation of all the previous code snippets 

along with some “glue” code to ensure that all 

the parts function well together. However, this 

listing does not include any code for controlling 

This completes the rule application and 

membership set combinations. The next step to 

consider is the aggregation step.

Aggregation

The aggregation statement is long because of the 

six control activation values. 

aggregated=np.fmax(control_activation_1,

control_activation_2,

control_activation_3,

control_activation_4,

control_activation_5,

control_activation_6)

You may notice that in the actual listing below, 

I had to break up this statement into a series of 

statements because the fmax function can only 

take two arguments instead of the six shown 

above.

It is time for the defuzzification step once the 

aggregation is completed.

#Applyrule3:ifroom_tempiscomfortableandtargettempiscoldthencommandiscool

active_rule3=np.fmin(room_temp_level_md,target_temp_level_lo)

#Combinewithlocontrolmembershipfunctionusing'np.fmin'

control_activation_3=np.fmin(active_rule3,control_temp_lo)

#Applyrule4:ifroom_tempiscomfortableandtargettempisheatthencommandisheat

active_rule4=np.fmin(room_temp_level_md,target_temp_level_hi)

#Combinewithhicontrolmembershipfunctionusing'np.fmin'

control_activation_4=np.fmin(active_rule4,control_temp_hi)

#Applyrule5:ifroom_tempishotandtargettempiscoldthencommandiscool

active_rule5=np.fmin(room_temp_level_hi,target_temp_level_lo)

#Combinewithlocontrolmembershipfunctionusing'np.fmin'

control_activation_5=np.fmin(active_rule5,control_temp_lo)

#Applyrule6:ifroom_tempishotandtargettempiscomfortablethencommandiscool

active_rule6=np.fmin(room_temp_level_hi,target_temp_level_md)

#Combinewithlocontrolmembershipfunctionusing'np.fmin'

control_activation_6=np.fmin(active_rule6,control_temp_lo)

08_Ch08.indd   153 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



154      Home Automation with Raspberry Pi

will be shown after the results of this initial 

script are displayed and analyzed.

the LEDs, which are intended to show the 

selected active output control mode. That script 

importnumpyasnp

importskfuzzyasfuzz

#Generateuniversevariables

#*roomandtargettemperaturerangeis50to90

#*samefortheoutputcontrolvariable

x_room_temp=np.arange(50,91,1)

x_target_temp=np.arange(50,91,1)

x_control_temp=np.arange(50,91,1)

#Generatetriangularfuzzymembershipfunctions

room_temp_lo=fuzz.trimf(x_room_temp,[50,50,70])

room_temp_md=fuzz.trimf(x_room_temp,[50,70,90])

room_temp_hi=fuzz.trimf(x_room_temp,[70,90,90])

target_temp_lo=fuzz.trimf(x_target_temp,[50,50,70])

target_temp_md=fuzz.trimf(x_target_temp,[50,70,90])

target_temp_hi=fuzz.trimf(x_target_temp,[50,90,90])

control_temp_lo=fuzz.trimf(x_control_temp,[50,50,70])

control_temp_md=fuzz.trimf(x_control_temp,[50,70,90])

control_temp_hi=fuzz.trimf(x_control_temp,[70,90,90])

#Getuserinputs

room_temp=raw_input('Enterroomtemperature50to90:')

target_temp=raw_input('Entertargettemperature50to90:')

#Calculatedegreesofmembership

room_temp_level_lo = fuzz.interp_membership(x_room_temp, room_temp_lo, float(room_temp))
room_temp_level_md = fuzz.interp_membership(x_room_temp, room_temp_md, float(room_temp))
room_temp_level_hi = fuzz.interp_membership(x_room_temp, room_temp_hi, float(room_temp))

target_temp_level_lo=fuzz.interp_membership(x_target_temp,target_temp_lo,

   float(target_temp))
target_temp_level_md=fuzz.interp_membership(x_target_temp,target_temp_md,

   float(target_temp))
target_temp_level_hi=fuzz.interp_membership(x_target_temp,target_temp_hi,

   float(target_temp))

#Applyallsixrules

#rule1:ifroom_tempiscoldandtargettempiscomfortablethencommandisheat

active_rule1=np.fmin(room_temp_level_lo,target_temp_level_md)

control_activation_1=np.fmin(active_rule1,control_temp_hi)

#rule2:ifroom_tempiscoldandtargettempishotthencommandisheat

active_rule2=np.fmin(room_temp_level_lo,target_temp_level_hi)

control_activation_2=np.fmin(active_rule2,control_temp_hi)

08_Ch08.indd   154 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      155

I carefully studied these results and derived 

these conclusions from the test data:

■n A command value of approximately 65 to 75 

means no action.

■n A command value of approximately 82 to 83 

means that heating is required.

■n A command value of approximately 56 to 65 

means that cooling is required.

The no action range was approximately ±4 

surrounding the target temperature. This is 

a good result because it minimizes system 

operation while still maintaining the desired 

room temperature.

Testing the Simple  
HVAC System Script 

Run the script by entering the following 

command at the terminal prompt in the home 

directory:

pythonsimpleHVAC.py

Table 8-3 shows the results of testing the 

control script using a representative range of 

room and target temperatures that were input 

manually. Note that all table entries are in °F.

#rule3:ifroom_tempiscomfortableandtargettempiscoldthencommandiscool

active_rule3=np.fmin(room_temp_level_md,target_temp_level_lo)

control_activation_3=np.fmin(active_rule3,control_temp_lo)

#rule4:ifroom_tempiscomfortableandtargettempisheatthencommandisheat

active_rule4=np.fmin(room_temp_level_md,target_temp_level_hi)

control_activation_4=np.fmin(active_rule4,control_temp_hi)

#rule5:ifroom_tempishotandtargettempiscoldthencommandiscool

active_rule5=np.fmin(room_temp_level_hi,target_temp_level_lo)

control_activation_5=np.fmin(active_rule5,control_temp_lo)

#rule6:ifroom_tempishotandtargettempiscomfortablethencommandiscool

active_rule6=np.fmin(room_temp_level_hi,target_temp_level_md)

control_activation_6=np.fmin(active_rule6,control_temp_lo)

#Aggregateallsixoutputmembershipfunctionstogether

#Combineoutputstoeasethecomplexityasfmax()onlyastwoargs

c1=np.fmax(control_activation_1,control_activation_2)

c2=np.fmax(control_activation_3,control_activation_4)

c3=np.fmax(control_activation_5,control_activation_6)

c4=np.fmax(c2,c3)

aggregated=np.fmax(c1,c4)

# Calculate defuzzified result using the method of centroids
control_value=fuzz.defuzz(x_control_temp,aggregated,'centroid')

#Displaythecrispoutputvalue

printcontrol_value

08_Ch08.indd   155 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



156      Home Automation with Raspberry Pi

LED Mode Indicators

I next made a few simple modifications to the 

simple HVAC system script that would light one 

of three LEDs depending on whether heating, 

cooling, or no action were determined based on 

user input. You should use the Fritzing diagram 

in Figure 8-8 to set up the LEDs to indicate the 

selected control mode. 

The following listing incorporates the LED 

modifications to the existing Simple HVAC 

system script (simpleHVAC.py). I renamed it 

simpleHVAC_LED.py, and it is available from this 

book’s companion website, www.mhprofessional 

.com/NorrisHomeAutomation. 

Table 8-3 Simple HVAC System Script Test Results

Target 
Temperature

Room 
Temperature

Command 
Output

50 50 70.00
60 57.78
70 56.67
80 57.78
90 56.67

60 50 82.22
60 70.00
70 66.40
80 66.40
90 57.78

70 50 83.33
60 82.22
70 82.22
80 70.00
90 56.67

80 50 83.33
60 82.22
70 83.33
80 70.00
90 57.78

90 50 83.33
60 82.22
70 83.33
80 82.22
90 70.00

 Fritzing diagram for control mode indicator LEDs.Figure 8-8

08_Ch08.indd   156 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      157

importnumpyasnp

importskfuzzyasfuzz

importRPi.GPIOasGPIO

importtime

GPIO.setmode(GPIO.BCM)

#preventunnecessaryGPIOwarningswhenre-runningthescript

GPIO.setwarnings(False)

# configure BCM GPIO pins 13, 19 and 26 as outputs
GPIO.setup(13,GPIO.OUT)

GPIO.setup(19,GPIO.OUT)

GPIO.setup(26,GPIO.OUT)

#setallLEDstoLOW

GPIO.output(13,GPIO.LOW)

GPIO.output(19,GPIO.LOW)

GPIO.output(26,GPIO.LOW)

#Generateuniversevariables

#roomandtargettemperaturerangeis50to90

#samefortheoutputcontrolvariable

x_room_temp=np.arange(50,91,1)

x_target_temp=np.arange(50,91,1)

x_control_temp=np.arange(50,91,1)

#Generatefuzzytriangularmembershipfunctions

room_temp_lo=fuzz.trimf(x_room_temp,[50,50,70])

room_temp_md=fuzz.trimf(x_room_temp,[50,70,90])

room_temp_hi=fuzz.trimf(x_room_temp,[70,90,90])

target_temp_lo=fuzz.trimf(x_target_temp,[50,50,70])

target_temp_md=fuzz.trimf(x_target_temp,[50,70,90])

target_temp_hi=fuzz.trimf(x_target_temp,[50,90,90])

control_temp_lo=fuzz.trimf(x_control_temp,[50,50,70])

control_temp_md=fuzz.trimf(x_control_temp,[50,70,90])

control_temp_hi=fuzz.trimf(x_control_temp,[70,90,90])

#Getuserinputs

room_temp=raw_input('Enterroomtemperature50to90:')

target_temp=raw_input('Entertargettemperature50to90:')

#Calculatedegreesofmembership

room_temp_level_lo = fuzz.interp_membership(x_room_temp, room_temp_lo, float(room_temp))
room_temp_level_md = fuzz.interp_membership(x_room_temp, room_temp_md, float(room_temp))
room_temp_level_hi = fuzz.interp_membership(x_room_temp, room_temp_hi, float(room_temp))

08_Ch08.indd   157 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



158      Home Automation with Raspberry Pi

target_temp_level_lo=fuzz.interp_membership(x_target_temp,target_temp_lo,

   float(target_temp))
target_temp_level_md=fuzz.interp_membership(x_target_temp,target_temp_md,

   float(target_temp))
target_temp_level_hi=fuzz.interp_membership(x_target_temp,target_temp_hi,

   float(target_temp))

#Applyallsixrules

#rule1:ifroom_tempiscoldandtargettempiscomfortablethencommandisheat

active_rule1=np.fmin(room_temp_level_lo,target_temp_level_md)

control_activation_1=np.fmin(active_rule1,control_temp_hi)

#rule2:ifroom_tempiscoldandtargettempishotthencommandisheat

active_rule2=np.fmin(room_temp_level_lo,target_temp_level_hi)

control_activation_2=np.fmin(active_rule2,control_temp_hi)

#rule3:ifroom_tempiscomfortableandtargettempiscoldthencommandiscool

active_rule3=np.fmin(room_temp_level_md,target_temp_level_lo)

control_activation_3=np.fmin(active_rule3,control_temp_lo)

#rule4:ifroom_tempiscomfortableandtargettempisheatthencommandisheat

active_rule4=np.fmin(room_temp_level_md,target_temp_level_hi)

control_activation_4=np.fmin(active_rule4,control_temp_hi)

#rule5:ifroom_tempishotandtargettempiscoldthencommandiscool

active_rule5=np.fmin(room_temp_level_hi,target_temp_level_lo)

control_activation_5=np.fmin(active_rule5,control_temp_lo)

#rule6:ifroom_tempishotandtargettempiscomfortablethencommandiscool

active_rule6=np.fmin(room_temp_level_hi,target_temp_level_md)

control_activation_6=np.fmin(active_rule6,control_temp_lo)

#Aggregateallsixoutputmembershipfunctionstogether

#Combineoutputstoeasethecomplexityasfmax()onlyastwoargs

c1=np.fmax(control_activation_1,control_activation_2)

c2=np.fmax(control_activation_3,control_activation_4)

c3=np.fmax(control_activation_5,control_activation_6)

c4=np.fmax(c2,c3)

aggregated=np.fmax(c1,c4)

# Calculate defuzzified result using the method of centroids
control_value=fuzz.defuzz(x_control_temp,aggregated,'centroid')

#Displaythecrispoutputvalue

printcontrol_value

#followinglimitvaluestakenfromtestdataanalysis

#no-actionmode

ifcontrol_value>68andcontrol_value<82:

GPIO.output(26,GPIO.HIGH)

08_Ch08.indd   158 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      159

Test Run for the Mode Indicator LEDs

I used a set of input values taken from Table 

8-3 to test the LED mode indication system. 

The values used and the appropriate associated 

modes are shown in Table 8-4.

Figure 8-9 shows the physical setup with the 

three control LEDs connected to a solderless 

breadboard using a T-Cobbler interface adapter.

time.sleep(5)

GPIO.output(26,GPIO.LOW)

#heatmode

elifcontrol_value>82andcontrol_value<84:

GPIO.output(13,GPIO.HIGH)

time.sleep(5)

GPIO.output(13,GPIO.LOW)

#coolmode

elifcontrol_value>56andcontrol_value<68:

GPIO.output(19,GPIO.HIGH)

time.sleep(5)

GPIO.output(19,GPIO.LOW)

#error,defaulttotheno-actionmode

else:

print'outofrangevaluecalculated'

print'no-actionmode'

GPIO.output(26,GPIO.HIGH)

time.sleep(5)

GPIO.output(26,GPIO.LOW)

 Physical setup.Figure 8-9

08_Ch08.indd   159 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



160      Home Automation with Raspberry Pi

120/240-VAC HVAC lines, if  necessary, using 

this scheme, provided that the relay contacts are 

rated to handle the higher voltage.

The simple HVAC system demonstration 

has now been completed, and you should have 

gained some insight into and appreciation 

for how FL can effectively implement a good 

solution to a common application such as 

HVAC. The next demonstration expands 

this simple project by introducing additional 

complexity to more closely model real-world 

HVAC applications.

Complex HVAC System 
Demonstration
The preceding simple demonstration used only 

two input parameters to control an HVAC 

system that had three operational modes. This 

situation is really an oversimplification of what 

is possible to achieve using FL technology. There 

are a number of other factors, both inputs and 

outputs, that have an impact on the operations 

of a real-world HVAC system including, but not 

limited to

■n Humidity

■n Time of day

■n Occupancy

Table 8-4 LED Indicator Test Values

Mode
Room 
Temperature

Target 
Temperature

Control 
Value

Heat 60 80 82.22

Cool 80 60 66.40

No action 60 60 70.00

The modified script is run by entering the 

following command at the terminal prompt in 

the home directory:

pythonsimpleHVAC_LED.py

I ran the script three times, entering the values 

for each control mode, and subsequently 

confirmed that the LED for that mode lighted 

for 5 seconds as expected.

This test completes the simple HVAC system 

demonstration. However, it may be apparent 

that the GPIO control design can be adapted 

to operate real-world HVAC control lines. The 

easiest way is to just substitute an optocoupler 

for a LED. Figure 8-10 shows an example 

schematic for this change.

In this circuit, a RasPi GPIO 3.3-V line is 

connected directly to an optocoupler, which 

has it output connected to a single-pole, single-

throw (SPST) relay. The relay contacts control a 

24-VAC line, which is the typical control voltage 

used in HVAC systems. You could even control 

Opto-Coupler

RasPi GPIO Pin
3.3V 5V

5V Relay

24 VAC

to HVAC System

330�

 Optocoupler control schematic.Figure 8-10

08_Ch08.indd   160 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      161

but I did find some online data regarding how 

to control humidity in an HVAC system. I 

finally decided that I would simply send control 

signals to a dehumidification diverter valve to 

control room humidity levels. I explain in the 

next section how the valve works, along with 

some other important background information 

on how humidity affects people. Applying 

this information is key to creating meaningful 

membership functions as well as functional and 

useful expert rules.

Humidity Control

Humidity levels have a significant effect on 

people occupying an air-conditioned space. 

Humidity levels are quantified using the dew 

point, which is commonly defined as “the 

temperature to which air must be cooled to 

become saturated with water vapor.” If  air at the 

dew point is further cooled, the airborne water 

vapor will condense to form liquid water (dew). 

When air cools to its dew point through contact 

with a surface that is colder than the air, water 

will condense on the surface.

Relative humidity is often confused with 

dew point. Relative humidity (RH) is defined 

as “the ratio between the current amount of 

water vapor in the air at a given temperature 

and the maximum amount of water vapor 

possible in the air at that temperature.” It 

has units of percent, whereas dew point has 

temperature units. High humidity in a building 

can have severe adverse effects beyond personal 

discomfort. Condensation can occur in building 

cavities that would promote mold growth and/

or other moisture damage to the building or its 

furnishings.

The dew point is always lower than or equal 

to the ambient air temperature, which is why dew 

or fog often occurs during the early morning 

hours when the air temperatures are typically 

lowest and the dew point highest. Dew point 

■n Supply airflow

■n Exhaust airflow

■n Makeup air

■n Outside air temperature and humidity

■n Economizer modes

You likely realize that these factors interact with 

each other in complex ways and that it is not a 

trivial task to generate appropriate membership 

function and expert system rules. In fact, the 

degree of complexity goes up exponentially with 

every new factor introduced into the FL control 

scheme. In the simple system demonstration, 

six rules were required to accommodate 

all combinations of the input and output 

linguistic terms that required an action. There 

theoretically should have been nine rules, but I 

chose to ignore three rules, which were dedicated 

to the no action mode. Now, if  one more 

linguistic term had been added, let’s say one 

dealing with humidity, that would have created 

the need for 25 rules. This large number is due to 

the added humidity input and a separate control 

output—hence 52 = 25. It is not hard to imagine 

the combinatorial “explosion” resulting from 

adding many of the factors just listed to an FL 

system. Generating all the associated rules for 

many factors is a nontrivial task, which is why it 

is called an expert rule set. Experts are really the 

only people having all the knowledge on how the 

many system factors interact and what control 

actions are required to achieve the desired 

results. Even experts will have a difficult time 

in detailing hundreds of rules without errors or 

conflicts, which is why complex HVAC system 

design is a challenging endeavor.

Although I am not an HVAC expert, I did 

attempt to modify the simple HVAC system 

demonstration by adding a humidity input 

variable. Creating the linguistic terms and 

membership functions was relatively simple 

because many data are available on the Internet. 

Creating the expert rules was another issue, 

08_Ch08.indd   161 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



162      Home Automation with Raspberry Pi

membership function, the dehumidification 

could be activated if  the room dew point was in 

an uncomfortable range. Figure 8-11 shows a 

representative generic air-conditioning system 

diagram that has a dehumidification feature.

Notice in the figure that there is a 

dehumidification diverter valve that can divert 

the cool airflow coming from the inside heat 

exchanger to the hot airflow coming from the 

outside condenser. While this seems illogical 

at first glance, it does make sense because 

warming the cool air slightly will reduce the 

overall moisture content, thus lowering the dew 

point. Many modern air-conditioning systems 

provide this feature and call it a “dry” mode of 

operation. In reality, it is a dehumidification 

operation.

The augmented system would need an 

additional sensor to measure dew point levels 

within the room. Then, if  the dew point was at 

an undesirable level, all appropriate rules would 

be invoked. These rules would likely include 

standalone dehumidification, which would 

mean just operating a diverter valve to heat 

is a very useful measure for personal comfort 

and has been quantified as shown in Table 8-5. 

It should clear from the table values that a dew 

point level 55 or less should always be proper 

objective in an HVAC system.

Table 8-5 Dew Point versus Personal Comfort

Dew Point (°F) Human Comfort

<50 Pleasant

50–55 Comfortable

56–60 Noticeable

61–65 Sticky

66–70 Uncomfortable

71–75 Harsh

76+ Severe discomfort

Augmented Simple HVAC System

This HVAC software demonstration assumes 

that a dehumidification subsystem has been 

installed in the plant and may be independently 

controlled aside from the heating and cooling 

subsystems. This would mean that even if  

the room temperature was in the comfortable 

Dehumidiÿcation
Diverter Valve

Inside Heat Exchanger

To Occupied
Space

Outside Condenser

Variable
Speed

Variable
Speed

Thermal
Expansion
Valve

Regulator
Valve

Refrigerant
Vapor

Compressed
VaporCompressor

Liquid Refrigerant
R114

A/C Plenum A/C Plenum

Cool
Air

Hot
Air

Valve

 Air-conditioning system.Figure 8-11

08_Ch08.indd   162 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      163

I next needed to create some rules on how to 

handle the new dew point input variable. After 

some considerable thought, I decided that a 

straightforward solution was best to control the 

room humidity. In case of too high humidity, 

the only output control available would be to 

open the dehumidification diverter valve and 

direct already cooled air to the warm output 

condenser airflow, as I said in the preceding 

section. The only caution I had was that the 

room should already been cooled or heated to 

the target temperature. Otherwise, the system 

could be set in an unstable state where neither 

the room temperature nor the desired dew point 

could be achieved. This prerequisite meant that 

the target temperature was already reached and 

that the no action mode was in effect. Therefore, 

the dehumidification would only be enabled 

provided that the system was in the no action 

mode. 

I created two dehumidification rules based on 

the preceding discussion. These are

1. If  the dew point is high and the target dew 

point is comfortable, then the command is 

dehumidify.

the cooled air in the air-conditioner plenum 

so that the dew point could naturally rise due 

to the increased capacity of the warmer air to 

retain moisture without it condensing. I added 

a few rules dealing with dehumidification just 

to illustrate the process, but I am no HVAC 

expert, as previously stated, and will have most 

likely left out some important rules. In any case, 

the software will query the user to enter both 

the room and target dew points, in addition to 

both room and target temperatures. I now need 

to expand the FL membership functions and 

add several expert rules before demonstrating a 

complex HVAC system simulation.

Additional Membership Functions  

and Expert Rules

Figure 8-12 shows a typical humidity 

membership function graph, which reflects how 

people react to humid conditions. The input 

variable for this graph is the dew point, and the 

membership values shown are in accord with 

the values shown in Table 8-5. Three triangular 

membership functions are shown in the figure, 

which are quite similar to the three original 

room temperature membership functions.

 Humidity membership functions.Figure 8-12

Medium HighLow

Input Variable Value

D
eg

re
e 

of
 M

em
be

rs
hi

p

1.0

0.8

0.6

0.4

0.2

0.0

30 40 50 60 70

08_Ch08.indd   163 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



164      Home Automation with Raspberry Pi

importnumpyasnp

importskfuzzyasfuzz

importRPi.GPIOasGPIO

importtime

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(13,GPIO.OUT)

GPIO.setup(19,GPIO.OUT)

GPIO.setup(26,GPIO.OUT)

GPIO.setup(21,GPIO.OUT)

GPIO.output(13,GPIO.LOW)

GPIO.output(19,GPIO.LOW)

GPIO.output(26,GPIO.LOW)

GPIO.output(21,GPIO.LOW)

#Generateuniversevariables

#roomandtargettemperaturerangeis50to90

#samefortheoutputcontrolvariable

x_room_temp=np.arange(50,91,1)

x_target_temp=np.arange(50,91,1)

x_control_temp=np.arange(50,91,1)

#Generatehumidityvariables

x_dew_point=np.arange(30,71,1)

x_target_dew_point=np.arange(30,71,1)

x_control_humid=np.arange(30,71,1)



#Generatefuzzymembershipfunctions

room_temp_lo=fuzz.trimf(x_room_temp,[50,50,70])

room_temp_md=fuzz.trimf(x_room_temp,[50,70,90])

room_temp_hi=fuzz.trimf(x_room_temp,[70,90,90])

target_temp_lo=fuzz.trimf(x_target_temp,[50,50,70])

target_temp_md=fuzz.trimf(x_target_temp,[50,70,90])

target_temp_hi=fuzz.trimf(x_target_temp,[50,90,90])

Complex HVAC System Python Script

The simpleHVAC_LED script was modified 

extensively, incorporating the new rules and 

membership functions just discussed. All the 

existing temperature control features are still 

in place and functioning. The new script is 

named complexHVAC.py and is available from 

this book’s website, www.mhprofessional.com/

NorrisHomeAutomation.

2. If  the dew point is comfortable and target 

dew point is low, then the command is 

dehumidify.

I also set up another LED to indicate when the 

dehumidification mode started. 

08_Ch08.indd   164 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      165

control_temp_lo=fuzz.trimf(x_control_temp,[50,50,70])

control_temp_md=fuzz.trimf(x_control_temp,[50,70,90])

control_temp_hi=fuzz.trimf(x_control_temp,[70,90,90])

#Generatehumiditycontrolmembershipfunctions

dew_point_lo=fuzz.trimf(x_dew_point,[30,30,50])

dew_point_md=fuzz.trimf(x_dew_point,[30,50,70])

dew_point_hi=fuzz.trimf(x_dew_point,[50,70,70])

target_dew_point_lo=fuzz.trimf(x_target_dew_point,[30,30,50])

target_dew_point_md=fuzz.trimf(x_target_dew_point,[30,50,70])

target_dew_point_hi=fuzz.trimf(x_target_dew_point,[50,70,70])

control_dew_point_lo=fuzz.trimf(x_control_humid,[30,30,50])

control_dew_point_md=fuzz.trimf(x_control_humid,[30,50,70])

control_dew_point_hi=fuzz.trimf(x_control_humid,[50,70,70])

#Getuserinputs

room_temp=raw_input('Enterroomtemperature50to90:')

target_temp=raw_input('Entertargettemperature50to90:')

dew_point=raw_input('Enterroomdewpoint20to80:')

target_dew_point=raw_input('Entertargetdewpoint20to80:')

#Calculatedegreesofmembership

room_temp_level_lo = fuzz.interp_membership(x_room_temp, room_temp_lo, float(room_temp))
room_temp_level_md = fuzz.interp_membership(x_room_temp, room_temp_md, float(room_temp))
room_temp_level_hi = fuzz.interp_membership(x_room_temp, room_temp_hi, float(room_temp))

target_temp_level_lo=fuzz.interp_membership(x_target_temp,target_temp_lo,

float(target_temp))
target_temp_level_md=fuzz.interp_membership(x_target_temp,target_temp_md,

float(target_temp))
target_temp_level_hi=fuzz.interp_membership(x_target_temp,target_temp_hi,

float(target_temp))

dew_point_level_lo = fuzz.interp_membership(x_dew_point, dew_point_lo, float(dew_point))
dew_point_level_md = fuzz.interp_membership(x_dew_point, dew_point_md, float(dew_point))
dew_point_level_hi = fuzz.interp_membership(x_dew_point, dew_point_hi, float(dew_point))

target_dew_point_level_lo=fuzz.interp_membership(x_target_dew_point,

   target_dew_point_lo, float(target_dew_point))
target_dew_point_level_md=fuzz.interp_membership(x_target_dew_point,

   target_dew_point_md, float(target_dew_point))
target_dew_point_level_hi=fuzz.interp_membership(x_target_dew_point,

   target_dew_point_hi, float(target_dew_point)) 

#Applyallsixrulesfortempraturecontrol

#rule1:ifroom_tempiscoldandtargettempiscomfortablethencommandisheat

active_rule1=np.fmin(room_temp_level_lo,target_temp_level_md)

control_activation_1=np.fmin(active_rule1,control_temp_hi)

08_Ch08.indd   165 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



166      Home Automation with Raspberry Pi

#rule2:ifroom_tempiscoldandtargettempishotthencommandisheat

active_rule2=np.fmin(room_temp_level_lo,target_temp_level_hi)

control_activation_2=np.fmin(active_rule2,control_temp_hi)

#rule3:ifroom_tempiscomfortableandtargettempiscoldthencommandiscool

active_rule3=np.fmin(room_temp_level_md,target_temp_level_lo)

control_activation_3=np.fmin(active_rule3,control_temp_lo)

#rule4:ifroom_tempiscomfortableandtargettempisheatthencommandisheat

active_rule4=np.fmin(room_temp_level_md,target_temp_level_hi)

control_activation_4=np.fmin(active_rule4,control_temp_hi)

#rule5:ifroom_tempishotandtargettempiscoldthencommandiscool

active_rule5=np.fmin(room_temp_level_hi,target_temp_level_lo)

control_activation_5=np.fmin(active_rule5,control_temp_lo)

#rule6:ifroom_tempishotandtargettempiscomfortablethencommandiscool

active_rule6=np.fmin(room_temp_level_hi,target_temp_level_md)

control_activation_6=np.fmin(active_rule6,control_temp_lo)

#Aggregateallsixoutputmembershipfunctionstogether

#Combineoutputstoeasethecomplexityasfmax()onlyastwoargs

c1=np.fmax(control_activation_1,control_activation_2)

c2=np.fmax(control_activation_3,control_activation_4)

c3=np.fmax(control_activation_5,control_activation_6)

c4=np.fmax(c2,c3)

aggregated=np.fmax(c1,c4)

# Calculate defuzzified result using the method of centroids
control_value=fuzz.defuzz(x_control_temp,aggregated,'centroid')

#Displaythecrispoutputvalue

print'Tempcontrolvalue=',control_value

# dehumidification rules
#rule7:ifdewpointishighandtargetdewpointiscomfortablethencommandisdehumidify

active_rule7=np.fmin(dew_point_level_hi,target_dew_point_md)

control_activation_7=np.fmin(active_rule7,control_dew_point_lo)

#rule8:ifdewpointiscomfortableandtargetdewpointislowthencommandisdehumidify

active_rule8=np.fmin(dew_point_level_md,target_dew_point_lo)

control_activation_8=np.fmin(active_rule8,control_dew_point_lo)

#Aggregatethetwodewpointoutputfunctions

aggregate_dp=np.fmax(control_activation_7,control_activation_8)

#Defuzzifythedewpointcontrol

control_dp=fuzz.defuzz(x_control_humid,aggregate_dp,'centroid')

#Displaythedewpointcontrolvalue

08_Ch08.indd   166 2/1/19   1:58 PM



Chapter 8  n  Fuzzy Logic and Home Automation      167

Test Run for the Complex HVAC 
System Script

I used a set of input values taken from Table 8-4 

to test the Complex HVAC system. The values 

used and the appropriate associated modes are 

shown in Table 8-6.

print'Dewpointcontrolvalue=',control_dp

#no-actionmode

ifcontrol_value>68andcontrol_value<82:

GPIO.output(26,GPIO.HIGH)

time.sleep(5)

GPIO.output(26,GPIO.LOW)

#coolmode

elifcontrol_value>82andcontrol_value<84:

GPIO.output(13,GPIO.HIGH)

time.sleep(5)

GPIO.output(13,GPIO.LOW)

#heatmode

elifcontrol_value>56andcontrol_value<68:

GPIO.output(19,GPIO.HIGH)

time.sleep(5)

GPIO.output(19,GPIO.LOW)

#error,defaulttono-actionmode

else:

print'outofrangevaluecalculated'

print'no-actionmode'

GPIO.output(26,GPIO.HIGH)

time.sleep(5)

GPIO.output(26,GPIO.LOW)

# dehumidification indicator
ifcontrol_dp>37andcontrol_value>68andcontrol_value<82:

GPIO.output(21,GPIO.HIGH)

time.sleep(5)

GPIO.output(21,GPIO.LOW)

The modified script is run by entering the 

following command at the terminal prompt in 

the Home directory:

pythoncomplexHVAC.py

Table 8-6 Complex HVAC System Script Test Values

Mode Room Temp
Target
Temp Control Value

Room  
Dew Point

Target  
Dew Point

Dew Point 
Control Value

Heat 60 80 82.22 60 50 n/a

Cool 80 60 66.40 60 50 n/a

No action 60 60 70.00 60 50 37.67

08_Ch08.indd   167 2/1/19   1:58 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



168      Home Automation with Raspberry Pi

A complete Python script for a simple HVAC 

system that runs on a RasPi was presented next. 

I went through all the necessary configuration 

and installation steps required to get the RasPi 

ready to run the script. The script was then 

successfully tested.

I next modified the script to enable a set 

of LEDs to indicate which HVAC mode 

was operational based on user inputs. This 

modification was also successfully tested.

The second part of the chapter dealt with 

designing and running a complex FL HVAC 

system. This was basically the same as the 

simple system except that many more input and 

output variables were necessary. I chose to add 

only one input and one output variable to the 

existing system because they were sufficient to 

demonstrate the issues with implementing an 

HVAC system with multiple I/O variables.

A modified Python script was written that 

incorporates dehumidification input and output 

variables. I explained how dehumidification can 

be implemented in a real HVAC system. The 

script simulated this action by lighting a LED 

when the dehumidification mode was activated.

I ran the script three times, confirming that 

each mode functioned correctly, as it did in the 

simpleHVAC_LED script. In addition, I entered 

both room and target dew points for each mode. 

The system did not light the dehumidification 

LED for either the heat or cool modes, as it was 

designed to do. It did light when the no action 

mode was active. That mode’s LED also lighted 

for 5 seconds as expected.

This test completed the complex HVAC 

system demonstration.

Summary 
This was a chapter on how to apply fuzzy logic 

(FL) concepts to HVAC applications. I divided 

the chapter into two major parts, one dealing 

with a simple, temperature-controlled HVAC 

system and the other one describing a more 

complex system.

I began the first part by reviewing basic FL 

concepts, which are key to understanding how 

FL works. There was a comprehensive discussion 

regarding the FL implementation procedure, 

which I closely followed to create an FL solution 

on a RasPi.

08_Ch08.indd   168 2/1/19   1:58 PM



C H A P T E R  9

Sensors

169

I CONSIDERED TITLING this chapter “Nuts and 

Bolts” because it is all about a variety of HA 

sensors that I believe make up the nuts and 

bolts of an HA system. I have discussed various 

sensors in previous chapters but really didn’t 

provide too much discussion on how they work 

or are interfaced with a RasPi. This chapter 

provides the necessary background on how to 

connect and program several commonly used 

sensors found in HA systems. Hopefully, it will 

also provide enough guidance for you to be 

able to connect different sensors using similar 

interface connections.

Temperature and  
Humidity Sensors
I will cover a variety of temperature and 

humidity sensors to provide you with a good 

understanding of how these sensors function. 

Each sensor provides both temperature and 

humidity readings, but they provide the data 

to a RasPi using different data protocols. 

You will gain a good understanding of the 

different interface protocols by reading all these 

sensor discussions. You should also consider 

duplicating one or more of the demonstrations 

to further improve your knowledge and 

confidence in using this sensor type.

Parts List

Item Model Quantity Source

RasPi 3 B 1 adafruit.com
amazon.com
mcmelectronics.com

Temp/humidity sensor DHT11 1 adafruit.com

10-kiloohm (kΩ) resistor Commodity 1 adafruit.com

Temperature sensor TMP36 1 adafruit.com

PIR sensor 555-28027 1 parallax.com

Ultrasonic sensor HC-SR04 1 amazon.com

Level shifter 1875 1 adafruit.com

09_Ch09.indd   169 2/1/19   2:00 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



170      Home Automation with Raspberry Pi

(NTC) thermistor elements in a bridge 

circuit; one is hermetically encapsulated in 

dry nitrogen, and the other is exposed to the 

environment.

I will be using the DHT11 resistive sensor 

because it is commonly used, quite inexpensive, 

and has good Python libraries readily available. 

Figure 9-1 shows two DHT11 versions that 

can be easily purchased. The unit on the 

left is the board version, and the unit on the 

right is the standalone component version. I 

used the component version in this chapter’s 

demonstration. 

The DHT11 specifications are

■n Very low cost

■n 3 to 5 V of power 

DHT11

A number of fairly inexpensive temperature 

and humidity sensors are readily available for 

purchase. They fall into one of three categories 

based on how they are designed:

■n Capacitive. These are thin-film capacitance-

based sensors with an element bonded to a 

monolithic circuit that provides a voltage 

output as a function of relative humidity.

■n Resistive. These measure the change in 

electrical impedance of a hygroscopic 

medium such as a conductive polymer, salt, 

or treated substrate.

■n Thermal conductivity. These consist of two 

matched negative temperature coefficient 

 DHT11 versions.Figure 9-1

09_Ch09.indd   170 2/1/19   2:00 PM



Chapter 9  n  Sensors      171

data-level representations. The software library 

for the one-wire protocol has been specifically 

designed to operate with only that protocol.

Physical Setup

Figure 9-2 is a Fritzing diagram showing how 

to connect a DHT11 with a RasPi. It is very 

important to connect a 10-kΩ pull-up resistor 

between the signal lead and the 5-V supply. The 

one-wire protocol will not work without this 

resistor installed.

Note that the supply to the sensor is 5 V, 

but the signal output level is 3.3 V, making the 

sensor completely compatible with the RasPi’s 

GPIO pin voltage levels. The DHT11 signal-out 

lead connects to RasPi GPIO pin 4.

Software Installation

You should follow this terminal command 

sequence to install the software required to 

operate a DHT11 sensor using Python:

1. Installs the git application, which is required 

for the cloning operation:

sudoapt-getinstallgit-core

■n 3- to 5-V I/O levels

■n 2.5 mA of maximum current use during 

conversion or requesting data

■n 20 to 80 percent humidity readings with ±5 

percent accuracy

■n 0 to 50°C temperature readings with ±2°C 

accuracy

■n Maximum of 1-Hz sampling rate

■n Size 15.5 × 12 × 5.5 mm (component 

version)

■n Four I/O pins with 0.1-inch spacing

There is only one signal lead on the sensor, 

which functions as both an input and output 

for digital signals. This arrangement is often 

referred to as a one-wire protocol because it 

only uses one signal lead for both input and 

output data transmission. Unfortunately, this 

is often confused with the 1-Wire Protocol, 

which is another single-wire I/O data 

transmission protocol. The 1-Wire Protocol is a 

device communications bus system designed by 

the Dallas Semiconductor Corp. that provides 

low-speed data, signaling, and power over a 

single wire. Both single-wire protocols perform 

I/O operations, but they use different timing and 

 Fritzing diagram for connecting a DHT11 with a RasPi.Figure 9-2

09_Ch09.indd   171 2/1/19   2:00 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



172      Home Automation with Raspberry Pi

#!/usr/bin/python

#Copyright(c)2014AdafruitIndustries

#Author:TonyDiCola

# Modified by D. J. Norris, 2018
# Permission is hereby granted, free of charge, to any person 
# obtaining a copy of this software and associated documentation files 
# ( the "Software" ), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so, 
#subjecttothefollowingconditions:

#Theabovecopyrightnoticeandthispermissionnoticeshallbe

# included in all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

importsys

importAdafruit_DHT

# added - DJN
importtime

5. Run the setup script:

sudo python setup.py install 

There is a file named AdafruitDHT.py in 

the Examples directory, which is located in 

the Adafruit_Python_DHT directory. This 

file will be used as a script to demonstrate the 

sensor’s operation. You should first modify this 

file using the nano editor to incorporate the 

changes I have noted in the following listing. The 

modifications cause the script to continuously 

run as well as display temperatures in ºF. You 

can leave out that last change if  you prefer to 

display temperatures in ºC.

2. Clone the Adafruit DHT11 software from 

the GitHub website:

git clone https://githb.com/adafruit/
   Adafruit_Python_DHT.git

3. Change into a new directory created from 

the clone operation:

cdAdafruit_Python_DHT

4. Build the software:

sudoapt-getinstallbuild-essential

python-dev

09_Ch09.indd   172 2/1/19   2:00 PM



Chapter 9  n  Sensors      173

# Parse command line parameters.
sensor_args = { '11': Adafruit_DHT.DHT11,
                '22': Adafruit_DHT.DHT22,
                '2302': Adafruit_DHT.AM2302 }
if len(sys.argv) == 3 and sys.argv[1] in sensor_args:
    sensor = sensor_args[sys.argv[1]]
    pin = sys.argv[2]
else:

    print('Usage: sudo ./Adafruit_DHT.py [11|22|2302] <GPIO pin number>')
    print('Example: sudo ./Adafruit_DHT.py 2302 4 - Read from an AM2302 connected to 
      GPIO pin #4')
    sys.exit(1)

# Try to grab a sensor reading.  Use the read_retry method which will retry up
# to 15 times to get a sensor reading (waiting 2 seconds between each retry).
humidity, temperature = Adafruit_DHT.read_retry(sensor, pin)

# Un-comment the line below to convert the temperature to Fahrenheit.
# Uncommented - DJN
temperature = temperature * 9/5.0 + 32

# Note that sometimes you won’t get a reading and
#theresultswillbenull(becauseLinuxcan't

# guarantee the timing of calls to read the sensor).
#Ifthishappenstryagain!

# added - DJN,  also pay attention to new indentations
whileTrue:

    if humidity is not None and temperature is not None:
        print('Temp={0:0.1f}  Humidity={1:0.1f}%'.format(temperature, humidity))
# added - DJN, you change time delay to any value you desire
        time.sleep(120)
else:

        print('Failed to get reading. Try again!')
        sys.exit(1)

Test Run

I ran the test script by entering the following 

terminal commands:

cdAdafruit_Python_DHT/examples

python AdafruitDHT.py 11 4

Figure 9-3 shows the script output after running 

for several hours.

TMP36

Analog Devices’ TMP36 is my favorite 

temperature sensor, mainly because it is quite 

accurate and also extremely inexpensive. It is 

shown in Figure 9-4. 

The TMP36 is housed in a standard TO-92 

form factor, which is also common to most 

plastic-encased transistors. The TMP36 is 

09_Ch09.indd   173 2/1/19   2:00 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



174      Home Automation with Raspberry Pi

far more complex than a simple transistor in 

that in contains circuits to both sense ambient 

temperature and convert that temperature to an 

analog voltage. The functional block diagram is 

shown in Figure 9-5. The TMP36 has only three 

leads, which are shown in the bottom view in 

Figure 9-6.

 AdafruitDHT.py script screen display.Figure 9-3

   Analog Devices TMP36 temperature 
sensor.

Figure 9-4

 TMP36 functional block diagram.Figure 9-5

  TMP36 bottom view showing external 
leads.

Figure 9-6

+VS (2.V to 5.5V)

VOUTShutdown
TMP35/
TMP36/
TMP37

Pin 1
Vcc

Pin 2
Signal Out

Pin 3
Ground

Bottom View
(Not to Scale)

1 2 3

09_Ch09.indd   174 2/1/19   2:00 PM



Chapter 9  n  Sensors      175

The actual temperature measurement range 

for the TMP36 is -40 to +125°C, with a typically 

accuracy of ±2°C and a 0.5°C linearity. These 

are good specifications considering that the 

cost of the TMP36 is typically less than $2. 

The TMP36 range, accuracy, and linearity are 

well suited for a home temperature monitoring 

system.

Analog-to-Digital Conversion

The RasPi does not contain any means by which 

analog signals can be processed. This means that 

an analog-to-digital converter (ADC) must be 

used before the RasPi can handle this sensor’s 

signal. 

I used a Microchip MCP3008, which is 

described on the Microchip datasheet as a 10-bit 

SAR ADC with SPI data output. Translated, 

this means that the MCP3008 uses a successive 

approximation register (SAR) technique to 

create a 10-bit digital result, which, in turn, is 

output in a serial data stream using the Serial 

Peripheral Interface (SPI) protocol. How the SPI 

protocol functions will be addressed after the 

sidebar that follows. The inexpensive MCP3008 

ADC chip has impressive specifications despite 

its very low cost. Figure 9-8 shows the package 

form and pin-out for this chip.

Table 9-1 provides details concerning these 

three leads, including important limitations.

Table 9-1 TMP36 Pin Details

Pin 
Number Description Remarks

1 +VS Supply voltage; ranges 
from 2.7 to 5.5 V

2 VOUT The analog voltage 
representing the 
temperature; the maximum 
voltage depends on the 
supply voltage

3 GND Common reference used 
by both the supply and VOUT 
pins

The voltage representing the temperature 

depends on the TMP36 supply voltage, which 

must be considered when converting the 

VOUT voltage to the equivalent real-world 

temperature. I do account for this in the software 

that converts the VOUT voltage to an actual 

temperature. Figure 9-7 is a graph of the signal 

pin voltage versus temperature using a 3-V 

supply voltage.

  Graph of VOUT voltage versus 
temperature for a +VS = 3 V.

Figure 9-7   MCP3008 package form and pin-out.Figure 9-8

–50

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
–25 0 25 50 75 100 125

a

b

c

Temperature (°C)

O
ut

pu
t V

ol
ta

ge
 (V

)

a. TMP 35
b. TMP36
c. TMP37
+VS = 3V

CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7

VDD

VREF

AGND
CLK
DOUT

DIN

CS/SHDN
DGND

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10

9

M
CP3008

09_Ch09.indd   175 2/1/19   2:00 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



176      Home Automation with Raspberry Pi

Inner Workings of the MCP3008 ADC Microchip
I will refer to the MCP3008 functional block diagram shown in Figure 9-9 throughout this discussion. The analog 
signal is first sele ted from one of eight channels that may be connected to the input channel multiplexer. Using 
one channel at a time is called operating in a single-ended mode. The MCP3008 channels can be paired to operate 
in a diffe ential mode if desired. A single configu ation bit named SGL/DIFF selects single-ended or differential 
operating mode. Single-ended is the mode used in this project.

The selected channel is then routed to a sample-and-hold circuit, which is one input to a comparator. The 
other input to the comparator is from a digital-to-analog converter (DAC), which receives its input from a  
10-bit SAR.

Basically, the SAR starts at a 0 count output and rapidly increments to a maximum of 1,023, which is the 
largest number that can be represented with 10 bits. Each count increment also increases the voltage appearing 
at the other comparator’s input. The comparator will trigger when the DAC voltage precisely equals the sampled 
voltage, and this will stop the SAR from any further incrementing. The digital number that exists on the SAR at 
the moment the comparator triggers is the ADC value. This number is then output, 1 bit at a time, through the 
SPI circuit, which I discussed below. All this takes place between sample intervals. The actual voltage represented 
by the ADC value is a function of the reference voltage Vref connected to the MCP3008. In our case, Vref is 3.3 V; 
therefore, each bit represents 3.3/1,024, or approximately 3.223 mV. For example, an ADC value of 500 would 
represent an actual voltage of 1.612 V, which was computed by multiplying 0.003223 by 500.

in how the MCP3008 accomplishes the analog-

to-digital conversion. There will be no loss of 

continuity if  you choose to skip the sidebar, 

however.

The MCP3008 chip used in this chapter’s 

project is in a dual-in-line package (DIP), which 

means that I had to use a solderless breadboard 

to interface it with the RasPi. I encourage you to 

read the following sidebar if  you are interested 

 MCP3008 functional block diagram.Figure 9-9

CH0
CH1
—
—
—

CH7*

Input
Channel

Max
DAC

VREF

VDD VSS

DOUTDON

Comparator

Sample
and
Hold

Control Logic Shift
Register

10-Bit SAR

*Note: Channels 4–7 are available on MCP3008 only.

CS/SHDN CLK

09_Ch09.indd   176 2/1/19   2:00 PM



Chapter 9  n  Sensors      177

Data communication is initiated by the master 

by first selecting the required slave. The RasPi 

selects the MCP3008 by bringing the SS line to 

a low state or 0 VDC. During each clock cycle, 

the master sends a bit to the slave, which reads 

it from the MOSI line. Concurrently, the slave 

sends a bit to the master, which reads it from 

the MISO line. This operation is known as full 

duplex communication, that is, simultaneous 

reading and writing between master and slave.

The clock frequency used depends primarily 

on the slave’s response speed. The MCP3008 

can easily handle bit rates of up to 3.6 MHz if  

powered at 5 V. Because we are using 3.3 V, the 

maximum rate is a bit less at approximately 2 

MHz. This is still very quick and will process the 

RasPi input without losing any data.

The first clock pulse received by the MCP3008 

with its chip select (CS) held low and D
in
 high 

constitutes the start bit. The SGL/DIFF bit 

follows next and then 3 bits that represent the 

selected channel(s). After these 5 bits have been 

received, the MCP3008 will sample the analog 

voltage during the next clock cycle.

The MCP3008 then outputs what is known as 

a low null bit, which is disregarded by the RasPi. 

The following 10 bits, each sent on a clock cycle, 

are the ADC value with the most significant bit 

(MSB) sent first down to the least significant 

Serial Peripheral Interface

The SPI is one of several data communication 

channels that the RasPi supports. It is a 

synchronous serial data link that uses one 

master device and one or more slave devices. A 

minimum of four data lines are used with SPI, 

and Table 9-2 shows the names associated with 

the master (RasPi) and the slave (MCP3008) 

devices.

Table 9-2 SPI Data Line Descriptions

Master Device 
(RasPi)

Slave Device 
(MCP3008) Remarks

SCLK CLK Clock

MOSI Din Master out, slave in

MISO Dout Master in, slave out

CS/SHDN SS Slave select

Figure 9-10 is a simplified block diagram 

showing the principal components used in 

an SPI data link. There are usually two shift 

registers involved in the data link, as shown in 

the figure. These registers may be hardware or 

software depending on the devices involved. The 

RasPi implements its shift register in software, 

whereas the MCP3008 has a hardware shift 

register. In either case, the two shift registers 

form what is known as an interchip circular 

buffer arrangement that is the heart of the SPI.

 SPI simplified block dia ram.Figure 9-10

Master
RasPi

Slave
MCP3008

SS

SCLK

MOSI

MISO

CS/SHDN

CLK

Din

Dout
7 0 7 0

09_Ch09.indd   177 2/1/19   2:00 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



178      Home Automation with Raspberry Pi

true temperature as measured by a separate 

calibrated thermometer.

Table 9-3 ADC Count, Voltage, and Temperature 
Equivalents

ADC value
Temperature 
(°C) Voltage

0 -50 0.00

78 -25 0.25

155 0 0.50

233 25 0.75

310 50 1.00

465 100 1.50

775 200 2.50

1,023 280 3.30

Software Setup. You next need to load the 

Python developer libraries, which will allow 

you to support the script to run the SPI circuit. 

Install the Python development libraries by 

entering

sudoapt-getinstallpython-dev

The following test script displays a continuous 

stream of temperature values generated by 

bit (LSB) sent last. The RasPi will then put the 

MCP3008 CS pin high, ending the ADC process.

Initial Test

Initial testing involves both creating a hardware 

circuit and establishing the proper Python 

software environment. 

Hardware Setup. I will first discuss the 

hardware circuit because it is relatively 

straightforward. Figure 9-11 shows the test 

schematic for the T-Cobbler, MCP3008, and 

TMP36. I connected the TMP36 V
out

 lead to the 

MCP3008 Channel 0 input, which is pin 1, as 

shown in Figure 9-8.

The actual physical setup is shown in Figure 

9-12. On the right side of the breadboard, you 

can see the TMP36 sensor connected with three 

jumper wires to the other breadboard circuitry. 

Table 9-3 shows the equivalents between the 

ADC count, sensed temperature, and voltage. 

Use these values to verify that the TMP36 sensor 

is accurately measuring the ambient temperature. 

You can easily add a calibration factor if  the 

measured temperature does not equal the 

T-Cobbler

3.3V

GND

Pin 18

Pin 23

Pin 24

Pin 25

VDD (16)

VREF (15)

AGND (14)

DGND (9)

CLK (13)

DOUT (12)

DIN (11)

CS (10)

MCP3008

CH0
(1)

5V

Ground

TMP36

1

3

2

Signal

 Test schematic.Figure 9-11

09_Ch09.indd   178 2/1/19   2:00 PM



Chapter 9  n  Sensors      179

a “bit-banging” approach to SPI interface 

implementation. This approach makes running 

the script independent of any prerequisite SPI 

driver installations, which I felt made the test 

process as simple as possible. 

the TMP36 sensor. The program is named 

TMPSensor.py and is available for download from 

this book’s website, www.mhprofessional.com/

NorrisHomeAutomation. The code follows the 

MCP3008 ADC configuration guidelines and SPI 

protocol, as discussed earlier. The code employs 

 Physical test setup.Figure 9-12

#!/usr/bin/envpython



importtime

importos

importsys

import RPi.GPIO as GPIO


GPIO.setmode(GPIO.BCM)


# read SPI data from MCP3008 chip, 8 possible channels (0 thru 7)
def readadc(adcnum, clockpin, mosipin, misopin, cspin):
    if ((adcnum > 7) or (adcnum < 0)):
return-1

    GPIO.output(cspin, True)


    GPIO.output(clockpin, False)  # start clock low
    GPIO.output(cspin, False)     # bring CS low


commandout=adcnum

    commandout |= 0x18  # start bit + single-ended bit
    commandout <<= 3    # we only need to send 5 bits here


09_Ch09.indd   179 2/1/19   2:00 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



180      Home Automation with Raspberry Pi

foriinrange(5):

        if (commandout & 0x80):
            GPIO.output(mosipin, True)
else:

            GPIO.output(mosipin, False)
        commandout <<= 1
        GPIO.output(clockpin, True)
        GPIO.output(clockpin, False)


adcout=0

    # read in one empty bit, one null bit and 10 ADC bits
foriinrange(12):

        GPIO.output(clockpin, True)
        GPIO.output(clockpin, False)
        adcout <<= 1
        if (GPIO.input(misopin)):
            adcout |= 0x1


    GPIO.output(cspin, True)


    adcout >>= 1       # first bit is 'null' so drop it
returnadcout

# define a function to convert raw count to a voltage level
def ConvertVolts(data, places):
    volts = (data * 3.3) / 1023
    volts = round(volts, places)
returnvolts

# define a function to calculate temp from TMP36 data
def ConvertTemp(data, places):
temp=((data*330/1023)-50)

    temp = round(temp, places)
returntemp



#changetheseasdesired-they'rethepinsconnectedfromthe

#SPIportontheADCtotheT-Cobbler

SPICLK = 18
SPIMISO=23

SPIMOSI=24

SPICS=25



#setuptheSPIinterfacepins

GPIO.setup(SPIMOSI, GPIO.OUT)
GPIO.setup(SPIMISO, GPIO.IN)
GPIO.setup(SPICLK, GPIO.OUT)
GPIO.setup(SPICS, GPIO.OUT)


# TMP36 connected to adc #0
temp_adc=0;



09_Ch09.indd   180 2/1/19   2:00 PM



Chapter 9  n  Sensors      181

figure, the number in the left-hand column 

is the raw count coming from the MCP3008 

ADC. The number in the middle column is the 

equivalent voltage for the raw count. The right-

hand column shows the equivalent temperature 

for the voltage in degrees Celsius.

 Run the script by entering

sudo python TMPSensor.py 

Figure 9-13 is screen shot of a portion of 

the program output with the TMP36 sensor 

measuring ambient room temperature. In the 

# define delay time
delay=2



whileTrue:



#readtheanalogpin

    temp_level = readadc(temp_adc, SPICLK, SPIMOSI, SPIMISO, SPICS)
iftemp_level==-1:

print'incorrectADCchannel'

        sys.exit()
    temp_volts = ConvertVolts(temp_level, 2)
    temp = ConvertTemp(temp_level, 2)

#displayresults

print'--------------------------------------'

    print temp_level, '     ', temp_volts, '     ', temp

#delay(inseconds)betweenmeasurements

 Initial test results.Figure 9-13

09_Ch09.indd   181 2/1/19   2:00 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



182      Home Automation with Raspberry Pi

This sensor’s ratings, pin connections, and 

range jumper settings are detailed in Figure 9-15, 

which comes from the manufacturer’s datasheet.

The PIR sensor uses a crystalline material 

that generates an electric charge when exposed 

to infrared energy. The amount of energy 

generated is proportional to the size and thermal 

properties of nearby objects. Environmental 

conditions also affect the sensor, including 

ambient light and heat sources. A Fresnel 

lens located in front of the active element 

that focuses all incoming infrared signals. An 

onboard electronic amplifier is triggered when 

rapid infrared signal changes are detected. The 

detection range for this particular sensor may 

be modified by repositioning a jumper located 

in the upper left-hand corner, as shown in the 

quick-start circuit of Figure 9-15. One position 

Passive Infrared Sensor

This sensor is designed to sense the presence 

of humans or other warm-blooded mammals. 

Figure 9-14 shows a typical passive infrared 

(PIR) sensor, which is inexpensive and 

commonly used for both motion and occupancy 

detection.

  Passive infrared sensor.Figure 9-14

 Pin Name Type Function

 1 GND G Ground: 0V

 2 Vcc P Supply Voltage: 3 to 6VDC

 3 OUT O PIR Signaling: HIGH = Movement; LOW = No Movement

 Symbol Description

 S Reduced sensitivity mode, for a shorter range, about 15 feet maximum

 L Normal operation, for a longer range, about 30 feet maximum

Pin Type: P = Power; G = Ground; I = Input; O = Output

Pin Deÿnitions and Ratings

Jumper Settings

Quick-Start Circuit

P0

GND

Vcc

PIR Sensor
Rev B

555-28027

S

L

 Sensor ratings, pin connections, and jumper settings.Figure 9-15

09_Ch09.indd   182 2/1/19   2:00 PM



Chapter 9  n  Sensors      183

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

# connect to GPIO pin 18
PIR_pin = 18

GPIO.setup(PIR_pin, GPIO.IN)

whileTrue:

    if GPIO.input(PIR_pin):
print'PIRalert'

    time.sleep(2)

Test Run

The sensor has some dim red LEDs in the 

Fresnel lens that will light for approximately 40 

seconds when power is first applied to the sensor. 

This is the self-calibration period that the sensor 

requires for normal operations. It will be ready 

to run the script after this period ends and the 

LEDs go out. You can run the script by entering 

this command:

python PIRTest.py

Now wave your hand in front of the sensor, 

and you should see the message PIRalert 

appear in the terminal window. It may reappear 

because the sensor requires several seconds to 

reset after the initial motion ceases. The LEDs 

in the Fresnel lens will also light when motion is 

detected.

is the so-called normal position and provides 

a nominal 30-foot detection range. The other 

position is the reduced-sensitivity one, where 

the detection range is half  the normal range, or 

15 feet. That position would be appropriate for 

indoor use in a normal-sized room.

This type of sensor is affected by ambient 

temperature, which should not be surprising 

considering that it basically works by detecting 

rapid temperature changes. Figure 9-16 is 

a graph that shows the effects of ambient 

temperature on the sensor for both the normal 

and reduced-sensitivity jumper settings.

Test Script

There are no special software dependencies 

that need to be installed in order to support 

this sensor. It functions just fine with the 

normal RPi.GPIO library that I have used in 

previous chapters, which is the only library 

needed to interface with the RasPi GPIO 

pins. The following is the Python script I 

wrote to test this sensor. I named this script 

PIRTest.py, and it is available from this book’s 

companion website, www.mhprofessional.com/

NorrisHomeAutomation.

#!/usr/bin/envpython

importtime

 Ambient temperature versus detection range.Figure 9-16

35

30

25

20

15

10

5

0
65 70 75 80 85 90 95

D
is

ta
n

ce
 (

F
e

e
t)

Temperature (°F)

Operating Mode

Reduced
Sensitivity

Normal
Operation

09_Ch09.indd   183 2/1/19   2:00 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



184      Home Automation with Raspberry Pi

Ultrasonic Sensor

An ultrasonic sensor provides for actual distance 

measurements between a target and the sensor. 

Figure 9-17 shows front and back views of the 

ultrasonic sensor used in this demonstration.

The ultrasonic sensor contains an embedded 

microprocessor as part of the encapsulated 

sensor hardware. This processor controls the 

ultrasonic transmitter and receiver transducers 

This test demonstrates that this type of sensor 

is quite simple in its operation and has little 

flexibility other than a range sensitivity setting. 

Nonetheless, this sensor type has been applied 

to a vast variety of home lighting applications, 

including driveway and porch lighting. However, 

the question naturally arises, what type of sensor 

is available if  you need a more precise measure 

of a person’s distance from the sensor? The next 

section addresses this issue.

 Ultrasonic sensor front and back views.Figure 9-17

09_Ch09.indd   184 2/1/19   2:00 PM



Chapter 9  n  Sensors      185

on the RasPi detects the time differential 

between the trigger pulse and the echo return 

pulse and converts that time interval into an 

equivalent distance between the sensor and 

the reflecting target. The operational block 

diagram in Figure 9-19 illustrates this process 

and identifies the sensor and RasPi pins used 

for the interconnections. However, an important 

level-shifter chip is not shown in this figure but is 

shown in the schematic in the next section.

The ultrasonic sensor measures distances from 

3 to 250 centimeters (cm) with an accuracy of 

approximately ±2 cm, which is less than a 1-inch 

error. Distance measurements also depend on 

the size and texture of the object that reflects 

the sound pulses. A wall provides excellent 

reflections, whereas a stuffed toy would be more 

problematic.

Physical Setup

This sensor requires 5 V for power and returns 

5-V pulses for the echo signal. This voltage level 

is incompatible with a RasPi GPIO level input 

and must be reduced to 3.3 V or else damage will 

occur to the RasPi. I elected to use a level-shifter 

module to accomplish this reduction. Figure 

9-20 is the interconnection schematic.

that physically measure distance by bouncing 

discrete ultrasonic sound wave pulses off  objects 

and timing how long the sound pulse takes to 

make the round-trip transit. The distance is 

easily calculated because the speed of sound in 

air is relatively constant. This is very similar to 

how bats navigate in caves and attics. Figure 9-18 

is a block diagram of the sensor showing how it 

functions.

The embedded processor generates an 

ultrasonic pulse when triggered by the RasPi. 

It also generates an output pulse if  a return 

echo is detected. A RasPi GPIO pin is used to 

trigger a 40-kHz ultrasonic burst. The sensor 

then “listens” for an echo return and sets 

another RasPi GPIO pin high. Software running 

 Operational block diagram.Figure 9-19

Embedded
Processor

Ultrasonic
Wave Pulses

Ampliÿer

To RasPi

Tx

Rx

  Ultrasonic sensor block diagram.Figure 9-18

10uS Trigger

23

24

RasPi

Total Transit
Time

Tx

Rx

H
C-SR04

VCC
TRIG
ECHO
GND

8 40kHz Pules

09_Ch09.indd   185 2/1/19   2:00 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



186      Home Automation with Raspberry Pi

NOTE: You can also use a simple resistive divider to 
lower the input voltage to pin 24, but I already had 
a level-shifter module available and felt that it was a 
better solution to this problem. However, Figure 9-21 is a 
schematic for the resistive voltage divider for those of you 
who may choose to use that alternative.

Figure 9-22 shows the breadboard ready for 

a test. You should place the sensor near the 

outer edge of the breadboard, clear of any other 

components or wires. I placed a small box in 

front of the sensor as well as a ruler calibrated 

in centimeters between the sensor and the box 

target.

T-Cobbler

HC-SR04

5V

23

24

GND

3.3V

Level
Shifter

Vcc

Trig

Echo

GND

a1 b1

hu

lu

GND

 Interconnection schematic.Figure 9-20

 Physical setup.Figure 9-22

GND

Echo Pin (5V)

GPIO Pin 24 (3.3V)

R1 = 5.1K

R2 = 10K

  Resistor voltage divider.Figure 9-21

09_Ch09.indd   186 2/1/19   2:00 PM



Chapter 9  n  Sensors      187

#calculatedistanceusingasound

#velocityconstant

    distance = pulse_duration * 17150

    # round-off distance to two dp's
    distance = round(distance, 2)

#displaythedistanceincm

    print 'distance = ', distance

#shortpausebetweenreadings

    time.sleep(2)

Test Run

You can run the script by entering this 

command:

python ultrasonicTest.py

Figure 9-23 shows the script output using a 

good reflective target set at about 10 cm from 

the sensor. The displayed values very accurately 

correspond with the actual distance between 

the sensor and target. I then tried measuring 

the distance between the room ceiling and 

the sensor. I again found a very accurate 

measurement result.

The most popular form of object detection 

in HA applications has been with PIR sensors, 

which I discussed earlier. While reliable, they are 

easily activated and fooled by temperature or 

light changes, flying insects, and small animals. 

In contrast, ultrasonic detection is more reliable 

because it senses motion or presence of an object 

by the reflection of transmitted ultrasonic bursts. 

Ultrasonic presence detection can be a very 

useful tool in building automation and boosting 

energy savings through the control of lights, 

heating, and other energy consumers. Another 

potential HA application is parking detection, 

where a driver can be guided to very accurately 

park a car in a garage. Ultrasonic detectors 

also can be used in safety applications in which 

Test Script

No special software dependencies are needed to 

support this sensor. It functions with the normal 

RPi.GPIO library, which that I have used in 

previous demonstrations. The following is the 

Python script I wrote to test this sensor. I named 

this script UltrasonicTest.py, and it is available 

on this book’s website.

#!/usr/bin/envpython



importtime

import RPi.GPIO as GPIO


GPIO.setmode(GPIO.BCM)

# define the GPIO pins
trigPin=23

echoPin=24

# setup the GPIO pins
GPIO.setup(trigPin, GPIO.OUT)
GPIO.setup(echoPin, GPIO.IN)

#setthetriggerinitiallylow

GPIO.output(trigPin, GPIO.LOW)

#shorttimetosettlethesensor

time.sleep(1)

#foreverloop

whileTrue:

#generatethe10uStriggerpulse

    GPIO.output(trigPin, GPIO.HIGH)
    time.sleep(0.000010)
    GPIO.output(trigPin, GPIO.LOW)

#waitforanechoreturn

    while GPIO.input(echoPin) == 0:
        pulse_start = time.time()
    while GPIO.input(echoPin) == 1:
        pulse_end = time.time()

#calculatepulseduration

pulse_duration=pulse_end-

pulse_start

09_Ch09.indd   187 2/1/19   2:00 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



188      Home Automation with Raspberry Pi

temperature. This situation requires the use of 

an analog-to-digital converter (ADC) between 

the sensor and the RasPi. I described how to 

set up a MCP3008 ADC to do the analog-to-

digital conversion. I explained how the ADC 

used the SPI protocol to communicate with the 

RasPi. The project demonstration successfully 

measured ambient temperature using the 

TMP36, MCP3008, and RasPi.

I next demonstrated a passive infrared (PIR) 

sensor. This sensor uses a crystalline sensing 

element to detect changes in ambient heat 

signatures. It is very useful for motion-detection 

applications.

The last sensor demonstrated used ultrasonic 

acoustic pulses to measure distances between 

the sensor and a target. This technique is akin to 

how bats echo-locate around their environment. 

This sensor is very accurate and reliable and 

is independent of ambient temperature, which 

adversely affects PIR sensors.

very reliable object detection is a high priority. 

A good application might be swimming pool 

surveillance, where it is critical to generate an 

alert or alarm if  a small child attempts to enter 

an unattended pool.

Summary
This chapter discussed popular sensors often 

used in HA systems. My primary purpose was to 

explore how different sensors operate and how 

they can be interfaced with a RasPi.

The first sensor demonstrated was the 

DHT11, which is an integrated humidity and 

temperature sensor. It works using a software 

library provided by Adafruit, which has a single-

line command to input a set of humidity and 

temperature readings from the sensor.

The next sensor described was a very 

inexpensive temperature sensor named TMP36. 

It outputs an analog DC voltage proportional to 

 Script output.Figure 9-23

09_Ch09.indd   188 2/1/19   2:00 PM



C H A P T E R  1 0

HA Security Systems

189

SECURITY SYSTEMS ARE CURRENTLY a hot topic in 

the HA field. There are literally dozens of such 

systems on display at major home improvement 

stores and “big box” electronics outlets. I 

could not in good conscience write an HA 

book without discussing this topic. In order to 

properly discuss home security, I would first like 

to discuss the concept of risk because it has a big 

impact on the type of security system required 

for a specific situation.

Risk
Most readers have heard and used the word risk 

many times. Most probably have not thought too 

much about what it actually means and how it 

may be used in analyzing a particular condition. 

The online Merriam-Webster Dictionary 

definition of risk is

1: possibility of loss or injury: peril

Parts List

Item Model Quantity Source

RasPi 3 B or B+ 1 adafruit.com
amazon.com
mcmelectronics.com

Arduino development board Uno Rev 3 1 adafruit.com
amazon.com 
mcmelectronics.com

Google Home device Any Home unit such as 
Basic or Mini

1 amazon.com

PIR sensor 555-28027 1 parallax.com

TauTronics Bluetooth transceiver Version 4.1 1 amazon.com

XBee transceiver XBee Pro S1 2 digikey.com
mouser.com
amazon.com

XBee Shield (Module) — 2 sainsmart.com
amazon.com

Bidirectional level-shifter chip 1875 1 adafruit.com

10_Ch10.indd   189 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



190      Home Automation with Raspberry Pi

that a particular hazard will occur, whereas a 

1.0 value means that it is 100 percent certain 

that a hazard will happen. For example, in 

the area where I live, it is common to have a 

loss of power occasionally during or after a 

severe storm passes through. Some probability 

values can only be determined by contacting 

appropriate local authorities. The local police 

chief  or sheriff  will likely have good statistics 

on the number of home burglaries and/or home 

invasions. Likewise, the local fire chief  can 

provide good data on the number of home fires 

that have happened recently in your city or town.

Identifying potential hazards should always 

be the first step in creating an optimal security 

system tailored toward a specific home or 

business. The next step is collecting or otherwise 

assigning a probability to the identified hazards. 

Sometimes you must assign a value based solely 

on a “gut” feeling for the likelihood of a hazard 

happening. In any case, the next step is to whittle 

down the list and eliminate hazards that have a 

low probability of happening. 

The next step in the process is to evaluate 

the cost versus benefit of mitigating the risk 

associated with all the hazards remaining on 

the list. Sometimes this is a rather easy task 

when considering risk versus cost. For example, 

mitigating the risk associated with smoke, fire, 

and CO detection in a home is just the purchase 

of a sufficient number of appropriate detectors 

and installing them in the recommended stations 

throughout the home. This risk mitigation is 

fairly inexpensive and, considering the hazard 

involved, an absolute necessity. In fact, most 

cities and towns in the United States at present 

require by government regulation that smoke 

detectors be installed in all new construction, 

whether it is residential or commercial.

Evaluating how much to spend on mitigating 

burglary risk is more problematic. It really 

depends on the crime prevalence in your 

community. If  there have been many burglaries 

2:  someone or something that creates or 
suggests a hazard

3a:  the chance of loss or the perils to 
the subject matter of an insurance  
contract; also: the degree of probability of 
such loss

  b:  a person or thing that is a specified haza d 
to an insurer

  c:  an insurance hazard from a specified cause
or source: war risk

4:  the chance that an investment (such as a 
stock or commodity) will lose value

I prefer a simpler definition, which is actually 

contained in the same dictionary definition 

but is rephrased to highlight an important 

consequence:

Risk is the probability of a hazard happening.

This simple definition raises the question, what 

constitutes a hazard? Common sense dictates 

that a hazard is any unwanted event, which 

could be as minor as misplacing your car keys or 

as catastrophic as having your home burn down. 

Common security hazards likely encompass 

some of the following:

■n Smoke/fire

■n Water/flood damage

■n Carbon monoxide (CO)

■n Burglars

■n Home invasion

■n Loss of power

■n Pet confinement

■n Privacy

There are likely others that may be of concern, 

but let’s stick with this short list. Each of 

the listed hazards typically has a probability 

associated with it. This probability is the chance 

that a hazard will happen. You will likely not 

know this value, which ranges from 0 to 1.0. A 

0 value means that there is absolutely no chance 

10_Ch10.indd   190 2/1/19   2:02 PM



Chapter 10  n  HA Security Systems      191

needed and to ensure that the system met the 

specific objectives required for implementing the 

room security. 

Security System Requirements

The following is a list of the minimal 

requirements necessary to meet the goals of the 

security system:

■n PIR motion detector

■n Remote sensor, battery operated

■n Wireless data transmission capability to a 

main RasPi controller

■n Voice assistant activation

■n Wireless alert/alarm transmission from the 

RasPi controller to the voice assistant

These requirements can be addressed in a variety 

of ways. I decided to break up the project into 

a series of subsystems to ease the overall design 

and construction.

Remote Sensor Hub

The components of the remote sensor assembly 

are shown in the block diagram in Figure 10-1.  

in your neighborhood, then the question 

becomes not if, but when. In this case, you 

should invest in a highly capable security system 

that will make your property less of a tempting 

target than other local properties. By contrast, 

if  there have been no or extremely few burglaries 

in your area, then a minimal, inexpensive system 

likely would be appropriate. Notice that I did 

not say that no system was required because 

criminals always seem to be in ample supply and 

will eventually strike. 

This discussion is simply a prologue to 

my first demonstration of a relatively simple 

security system that uses a single PIR sensor first 

described in Chapter 9. 

PIR Security System
This system will implement a motion-detection 

system that can be placed high up in a room 

corner where it can cover the entire space. 

The remote PIR sensor is battery operated to 

facilitate easy placement and provide great 

flexibility to the user so that a room may be 

properly covered.  I started this project with a 

list of requirements to clearly delineate what was 

Arduino
Uno

Arduino
Uno

X-Bee
Shield

X-Bee
Shield

X-Bee
Module

X-Bee
Module

Infrared
Energy

Target

PIR Sensor

RasPi BT
Module

Wireless
Link

Wireless
Link

Google
Home
Device

Internet
Cloud

 Remote sensor hub block diagram.Figure 10-1

10_Ch10.indd   191 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



192      Home Automation with Raspberry Pi

used on solderless breadboards. This means that 

a special connector socket must be used with the 

XBee Module to interconnect it with the Uno. 

This special socket is part of the XBee Arduino 

Shield, which is shown in Figure 10-3.

This shield can be purchased from sainsmart 

.com and contains all the functionality needed 

to effectively interface an Arduino board such 

as the Uno with an XBee Module. The shield 

and accompanying software make it very easy 

to create a useful RF communications link with 

very little effort.

The following sidebar examines the XBee 

hardware to show how this clever design makes 

wireless transmission so easy. Feel free to skip 

the sidebar if  you are not particularly interested 

in learning about the XBee technology.

Note that I used two Arduino Uno Rev 3 

boards as a controller for this the wireless 

data subsystem. An Uno controller is in direct 

wireless connection with the main RasPi 

controller using an XBee Shield, which, in 

turn, interfaces with an XBee RF module that 

implements the Zigbee data communications 

protocol. I discuss the XBee Shield, the XBee 

Module, and the Zigbee protocol in the next 

section.

The remote hub Uno controller will send an 

alert/alarm signal to the RasPi when it receives a 

signal from the PIR sensor on detecting motion 

within the room. The complete remote sensor 

assembly is power by a 6-V battery pack. 

XBee and Zigbee Technologies

I selected XBee transceivers to implement the 

RF link because they are small, lightweight, 

inexpensive, and totally compatible with Uno 

boards. They also can transmit programmed 

digital data packets, unlike the RF transceivers 

discussed in Chapter 2, which only transmit 

several fixed and unchangeable digital data 

values. This additional flexibility is important 

in order to be able to transmit specific sensor 

data to support data-generator sensors. A data-

generator sensor might include one that passes 

environmental data such as temperature and/or 

humidity.

XBee is the brand name for a series of 

digital RF transceivers manufactured by Digi 

International. Figure 10-2 shows one of the 

XBee Pro S1 transceivers that I used. There are 

two rows of 10 pins on each side of the module. 

These pins are spaced 2 mm apart, which is 

incompatible with the standard 0.1-inch spacing 

  XBee Pro S1 transceiver.Figure 10-2

10_Ch10.indd   192 2/1/19   2:02 PM



Chapter 10  n  HA Security Systems      193

XBee Hardware
All the electronics in the XBee hardware, except 
for the antenna, are contained in a slim metal case 
located on the bottom of the module, as can be 
seen in Figure 10-4. If you look closely at the figu e, 
you should see the bottom of the antenna wire, 
which is located near the top left corner of the case. 
While Digi International is not too forthcoming 
regarding what makes up the electronic contents of 
the case, I did determine that the earlier versions of 
the XBee Pro transceivers used the Freescale Model 
MC13192 RF transceiver. This chip is a hybrid type, 
meaning that it is made up of both analog and 
digital components. The analog components make 
up the RF transmit-and-receive circuits, whereas the 
digital components implement all the other chip 
functions. It is a complex chip, which is the reason 
why the XBee Module is so versatile and able to  XBee electronics case.Figure 10-4

 XBee Arduino Shield.Figure 10-3

(continued on next page)

10_Ch10.indd   193 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



194      Home Automation with Raspberry Pi

The XBee Module implements a full 
network protocol suite, but from a hardware 
perspective, this means that there must also be 
a microprocessor present in the electronics case. 
From my research, I cannot determine which 
type of microprocessor it is, but I am willing to 
make an educated guess that it is a Freescale 
chip based on the reasonable assumption that 
the MC13192 would be designed to be highly 
compatible with the company’s own line of 
microprocessors. One other factor supporting 
my guess is that Digi International has recently 
introduced a line of programmable XBee 
Modules named XBee Pro SB that use the 8-bit 
Freescale S08 microprocessor. 

The XBee pins are detailed in a logical 
arrangement in Figure 10-5 for your information. 
All the pin and function descriptions are shown 
in Table 10-2. Be aware that only four of the pins 
are needed for this project, and they are shown 
with an asterisk next to the pin number. 

automatically perform a remarkable number of 
networking functions. Table 10-1 shows a select 
number of features and specific tions for the 
MC13192 chip.

Table 10-1 Freescale MC13192 Features  
and Specific tions

Features/
Specifications Description

Frequency/
modulation

O-QPSK data in 5.0-MHz 
channels and full spread-
spectrum encode and decode 
(modified DSSS
Operates on one of 16 selectable 
channels in the 2.4-GHz ISM 
band

Maximum 
bandwidth

250 kilobits per second (kbps; 
compatible with the 802.15.4 
standard)

Receiver 
sensitivity

≤92 decibel-milliwatt (dBm; 
typical) at 1.0 percent packet 
error rate

Maximum 
output power

0 dBm nominal, programmable 
from -27 to 4 dBm

Power supply 2.0 to 3.4 V

Power 
conservation 
modes

<1 µA of current
1 µA typical hibernate current
35 µA typical doze current  
(no CLKO)

Timers/
comparators

Four internal timer comparators 
are available to supplement 
MCU resource

Clock outputs Programmable frequency clock 
output (CLKO) for use by MCU

Number of 
GPIO pins

7

Internal 
oscillator

16 MHz with onboard trim 
capability

Operating 
temperature 
range 

-40 to 85°C

Package size QFN-32 Small Form Factor (SFF)

+3.3V

Tx

Rx

2.4 cm

2.
4 

cm

1
2
3
4
5
6
7
8
9

10

20
19
18
17
16
15
14
13
12
11

i/o*
i/o*
i/o*
i/o*
Rts*
i/o*

Vref*
Status

Cts*
Tx led

+3.3V
Data Out
Data In
Cd*
Reset
Pwm
nc
nc
Sleep/Dtr
Gnd

+ XBee

 Logical XBee pin-out diagram.Figure 10-5

10_Ch10.indd   194 2/1/19   2:02 PM



Chapter 10  n  HA Security Systems      195

is your indication that a communications link has 
been established.

I will finish this sidebar y mentioning that 
the XBee uses a highly capable networking 
protocol name Zigbee, which is also called a 
personal area network (PAN). 

A considerable number of functions are available 
to you if needed, but this project requires only 
the most minimal functions for simple and 
reliable data transfers. Thankfully, the two XBee 
Modules automatically connect and establish 
reliable communications when power is applied 
to them. A red blinking LED on the XBee Shield 

Table 10-2 XBee Pin Descriptions and Functions

Pin 
Number Name(s) Description

1* Vcc Power supply, 3.3 V

2* Dout Data out (TXD)

3* Din Data in (RXD)

4 DIO12 GPIO pin 12

5 Reset XBee module reset, pin low

6 PWM0/RSSI/DIO10 Pulse-width modulation (PWM Analog 0), received signal strength 
indicator (RSSI), GPIO pin 10

7 DIO7 GPIO pin 7

8 Reserved Do Not Connect (DNC)

9 DTR/SLEEP_RQ/DIO8 Data Terminal Ready (DTR), GPIO Sleep Assertion (pin low), GPIO pin 8

10* GND Ground or common

11 DIO4 GPIO pin 4

12 CTS/DIO7 Clear To Send (CTS), GPIO pin 7

13 ON/SLEEP Pin high when not sleeping

14 Vref Voltage reference level (used with analog-to-digital conversion)

15 ASSOC/DIO5 Pulse signal when connected to a network, GPIO pin 5

16 RTS/DIO6 Request To Send (RTS), GPIO pin 6

17 AD3/DIO3 Analog input 3, GPIO pin 3

18 AD2/DIO2 Analog input 2, GPIO pin 2

19 AD1/DIO1 Analog input 1, GPIO pin 1

20 AD0/DIO0/COMMIS Analog input 0, GPIO pin 0, commissioning button

10_Ch10.indd   195 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



196      Home Automation with Raspberry Pi

for the first prototype. It is always important 

to be able to easily reconfigure and reconnect 

components during initial testing to resolve any 

latent problems or issues. Figure 10-7 shows 

the electrical schematic for the complete hub 

assembly, which includes a PIR sensor.

I fit the Uno board along with the XBee 

Shield and Module into a plastic case, as shown 

in Figure 10-6. The assembly is completely self-

contained and is easily mounted to a wall surface 

using adhesive Velcro strips. I also decided to 

use a small solderless breadboard within the case 

to facilitate interconnecting all the components 

 Remote sensor hub in a plastic case.Figure 10-6

 Remote sensor hub schematic.Figure 10-7

6V Battery
Pack

Arduino Uno
with X-Bee Shield
and Module

PIR Sensor

GND
Vcc
OUT

GND
5V
10

10_Ch10.indd   196 2/1/19   2:02 PM



Chapter 10  n  HA Security Systems      197

  Battery pack connection to remote 
sensor hub assembly.

Figure 10-8

I also connected a coaxial plug to the battery 

pack, which inserts into the Uno board’s coaxial 

power socket. I disconnect the power when not 

testing to conserve battery life. The Uno board 

with the Arduino Shield removed is shown in 

Figure 10-8.

I will discuss the remote sensor assembly 

software after the next section concerning the 

main RasPi controller.

Main Controller Assembly

I used a RasPi 3, Model B, as the main 

controller for this project. Figure 10-9 shows the 

block diagram for the main controller assembly.

The RasPi has an Uno board along with an 

XBee Shield and XBee Module, which provide 

two-way communication with the remote sensor 

hub. It also has an external Bluetooth transceiver 

that wirelessly connects to the voice assistant, 

enabling an audio stream to be sent from the 

RasPi to the voice assistant. The audio stream is 

sourced from the RasPi’s 3.5-mm audio output 

jack. You may be wondering why I didn’t just 

use the built-in Bluetooth connection hardware 

in the RasPi 3. The answer is that I did try it 

and found that the software installation was 

quite difficult and the actual wireless connection 

was just too unreliable. I decided that use of an 

external Bluetooth module was a much simpler 

and more reliable approach, and the module cost 

was also reasonable. Sometimes you just have 

to take an alternative route to proceed with a 

project.

10_Ch10.indd   197 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



198      Home Automation with Raspberry Pi

make this system a permanent item in the house. 

However, a tabletop version was adequate for 

this prototyping stage.

The remaining system component to be 

discussed is the voice assistant.

Voice Assistant

I elected to use the Google Home device to act 

as the voice assistant for this project. I decided 

on this unit because I liked the idea of using 

Web services with the RasPi main controller so 

that I could easily expand the system capabilities 

without having to fuss with the Alexa Skills, if  I 

The complete main controller assembly was 

set up on a tabletop for convenience without any 

attempt to package it as a complete assembly. 

It is powered from AC mains except for the 

external Bluetooth module, which has an 

internal rechargeable battery. However, I did 

plug the module’s charging micro USB cable 

into one of the RasPi’s USB sockets. The main 

controller schematic is shown in Figure 10-10.

I used a solderless breadboard with a 

T-Cobbler interface adapter to interconnect 

all the components for convenience and ease 

of assembly. I would have housed all the 

components in a plastic case if  I had wanted to 

 Main controller assembly block diagram.Figure 10-9

 Main controller assembly schematic.Figure 10-10

Wireless
Link Wireless

Link

X-Bee
Module

X-Bee
Shield

Arduino
Uno

Level
Shifter RasPi

WiFi WiFi

Internet
Cloud

BT
Module

Google
Home
Device

Arduino Uno
with X-Bee Shield
and Module

Wall-Wart
Supply

Level Shifter Chip

T-Cobbler

RasPi
Bluetooth to
Home Device

TauTronics
Bluetooth

Module

GND

10

GND

12
5V
3.3V

GND
B1 A1

HV
LV

3.5mm
Audio Jack

USB Port

10_Ch10.indd   198 2/1/19   2:02 PM



Chapter 10  n  HA Security Systems      199

1. Respond to a Web request to activate the 

system

2. Activate the sensor by sending a signal to the 

remote sensor assembly

3. Respond to any alert/alarm message sent by 

the remote sensor assembly

4. Send a present alert/alarm to the voice 

assistant via Bluetooth

I will comment on each one of these 

requirements as I go through the Web software 

development details.

In the spirit of rapid software development, 

I decided to reuse the Web server code I created 

in Chapter 2. I simply extended the existing code 

by creating a new snippet that would respond 

to any applet requesting that the PIR sensor be 

enabled. Please review the Chapter 2 discussion 

regarding applets and corresponding Web 

services if  what I just mentioned does not make 

sense to you.

The newly extended Web server code listing, 

which I named securityTest.py, is as follows: 

elected to go that route. Feel free to use an Alexa 

device if  you so choose, but you will need to 

create your own Skill software to communicate 

with the Alexa device. That should not be too 

hard, provided that you follow the guidelines I 

presented in Chapter 4.

The Home device applet software is detailed 

within the following software generation and 

installation sections.

Software Generation and Installation

I have chosen to parse the software sections into 

separate groups, where each group addresses a 

major system component. The first component 

I discuss is the RasPi’s main controller because 

that is the cornerstone of the complete system.

Main Controller Web Software

Creating the RasPi’s Web software is a fairly 

simple process as long as you keep in mind what 

the subsystem requirements are and how they 

should be implemented. The requirements for 

the main controller are as follows:

#UsingRPi.GPIOandFlaskforthisscript

importRPi.GPIOasGPIO

from flask import Flask

app=Flask(__name__)

#Thisisthedefaultmethodthatisinvokedwithoutanextension

@app.route("/",methods=['GET','POST'])

defindex():

GPIO.setmode(GPIO.BCM)

GPIO.setup(12,GPIO.OUT)

print"TurningtheLEDon"

GPIO.output(12,GPIO.HIGH)

return"LEDon"

# This method is invoked when an "/off" extension is detected
@app.route("/off", methods=['GET','POST'])
def off():
GPIO.setmode(GPIO.BCM)

10_Ch10.indd   199 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



200      Home Automation with Raspberry Pi

GPIO.setup(12,GPIO.OUT)

    print "Turning off the LED"
GPIO.output(12,GPIO.LOW)

    return "LED off"

#Thismethodisinvokedwhenan"/AClampon"extensionisdetected

@app.route("/AClampon",methods=['GET','POST'])

defAClampon():

GPIO.setmode(GPIO.BCM)

GPIO.setup(7,GPIO.OUT)

print"TurningontheAClamp"

GPIO.output(7,GPIO.HIGH)

return"AClampon"

# This method is invoked when an "/AClampoff" extension is detected
@app.route("/AClampoff", methods=['GET','POST'])
def AClampoff():
GPIO.setmode(GPIO.BCM)

GPIO.setup(7,GPIO.OUT)

    print "Turning off the AC lamp"
GPIO.output(7,GPIO.LOW)

    return "AC lamp off"

#Thismethodisinvokedwhenan"/turnonsecurity"extensionisdetected

@app.route("/turnonsecurity",methods=['GET','POST'])

defEnableSecuritySystem():

GPIO.setmode(GPIO.BCM)

GPIO.setup(18,GPIO.OUT)

print"Enablingthesecuritysystem"

GPIO.output(18,GPIO.HIGH)

return"Securitysystemenabled"

defDisableSecuritySystem():

GPIO.setmode(GPIO.BCM)

GPIO.setup(18,GPIO.OUT)

print"Disablingthesecuritysystem"

GPIO.output(18,GPIO.LOW)

return"Securitysystemdisabled"

if__name__=="__main__":

app.run(host='0.0.0.0',port=80,debug=True)

10_Ch10.indd   200 2/1/19   2:02 PM



Chapter 10  n  HA Security Systems      201

The main controller software is ready for a 

quick initial test prior to proceeding with adding 

more complexity to the system.

Initial Test I connected a LED to GPIO pin 18 

in preparation to test the newly extended RasPi 

Web server. I then started the RasPi Web server 

with this command:

sudopythonsecurityTest.py

I then spoke the next phrase to test the “Turn on 
security system” applet:

■n “OK Google, turn on security system.”

The LED connected to pin 18 turned on after 

I spoke the phrase into the Home device. I also 

heard the phrase “The security system is on” 

come from the Home device, confirming that the 

Web request was completed. In a similar manner, 

the LED turned off  after I spoke the phrase “OK 
Google, turn off the secu ity system.” As above, 

I heard the phrase “The security system is off” 
come from the Home device, confirming that the 

desired Web request was completed.

These actions confirmed that the Web server 

and applets were functioning as desired. It was 

now time to expand the software to include the 

RF communications link with the remote sensor 

hub.

RF Communications Link My initial objective 

in implementing the wireless link was just to 

convey a state change whenever the PIR sensor 

detected motion. By far the easiest way to do 

this was by using GPIO pins on both the Uno 

controller and one RasPi GPIO pin. I was well 

aware that this approach runs counter to what I 

discussed earlier in having actual data sent, but 

my immediate goal was to quickly and reliably 

create a working RF link. The wireless link can 

be extended at a later time to handle real data 

exchanges, but for now, I just wanted to get the 

system up and running. 

But wait, if  you examined the listing, you 

realized it only controls GPIO pin 18 and has 

nothing in it that would activate the remote 

sensor hub. I did this on purpose because I have 

not yet shown you anything regarding how I 

implemented RF communications software 

and what type of data are linked between the 

main controller and the remote sensor hub. It 

is almost always a serious mistake to attempt 

to implement every requirement at one time. In 

this case, I will only light a LED connected to 

pin 18 as proof that the Web request is working 

as expected. The RF software portion will come 

later as I complete all the code.

The next logical step in code development is 

to create two applets that will request that the 

security system be enabled or disabled. Again, 

I will not repeat the clear instructions provided 

in Chapter 2 but simply summarize some of the 

information required to create the applets. One 

new applet is required to activate the security 

system and another one to disable it. I used the 

following example URLs for these applets:

http://mytestsite.org/turnonsecurity

http://mytestsite.org/turnoffsecurity

Please note these URLs are just examples, 

not real ones, so they will not work. The applets 

both use a POST method, which is how the 

desired action is directed to the appropriate 

method within the RasPi Web server. 

The activation trigger phrases I used in the 

applets are

■n “Turn on security system”

■n “Turn off secu ity system”

The two response phrases are

■n “The security system is on”

■n “The security system is off”

10_Ch10.indd   201 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



202      Home Automation with Raspberry Pi

which was attached to the plastic case. The three 

interconnecting wires were routed through a hole 

on the top of the case to the Arduino board. 

Figure 10-11 shows the complete assembly with 

the PIR sensor in place.

You will be ready for the remote hub software 

installation once the preceding assembly steps 

have been completed.

Remote Hub Software Installation You will 

need to install the latest Arduino IDE in order 

Remote Hub Hardware and Software 

Installation I already described the remote 

hub assembly in a previous section. I do have to 

provide a schematic showing how the PIR sensor 

connects to the Arduino board before describing 

the software that controls the whole assembly. 

Remote Hub Hardware Installation Figure 

10-7 showed the three-wire connection between 

the Uno and the PIR sensor. I mounted the 

PIR sensor to a small solderless breadboard, 

 Complete remote hub with sensor.Figure 10-11

10_Ch10.indd   202 2/1/19   2:02 PM



Chapter 10  n  HA Security Systems      203

There is no need to go through a power-

on sequence with the Uno board. Any 

uploaded program stored in its EEPROM will 

automatically run when power is applied to the 

Uno. Likewise, the Uno is designed to shut off  

“gracefully” when the power is disconnected.

No other software installations are required 

for the remote sensor hub. The next software 

installation to be discussed concerns the main 

controller assembly.

Additional Main Controller Hardware and 

Software Installations I have already described 

most of the principal components required 

for the main controller assembly in a previous 

section. The Web software necessary to control 

the main controller assembly was also described 

and tested in previous sections. I also provided 

a schematic showing how the Uno with an 

XBee Shield attached connects to the RasPi. In 

addition, I described how to set up the external 

Bluetooth module, which creates a wireless link 

between the RasPi and the Home device. 

Main Controller Hardware Installation  

Figure 10-10 showed how to connect the Uno to 

the RasPi. Please note that I used a level-shifter 

chip between the Uno and the RasPi because the 

Uno output level is 5 V, whereas the RasPi cannot 

handle any level greater than 3.3 V without 

likely damage. Both the 3.3- and 5-V supplies are 

sourced from the T-Cobbler adapter.

The Uno and XBee assembly are powered 

from a separate wall wart power supply. Do not 

attempt to power the Uno from the T-Cobbler 

5-V power source. There is simply not enough 

current available from that source to power both 

the RasPi and Uno boards.

A TauTronic external Bluetooth module 

is shown in Figure 10-12. The 3.5-mm phone 

jacket shown in the figure must be plugged into 

the matching socket mounted on the RasPi.

to install the code described in this section.  

This is a free IDE download available for 

Windows, Mac, and Linux platforms at https://

www.arduino.cc/en/Main/Software. I will not 

attempt to explain how to use this software 

because most of the readers of this book are 

quite likely to be very familiar with this IDE. 

However, a lot of information and tutorials are 

available on the Internet for readers who have 

never used an Arduino. 

This next listing, which I named pirTest.ino, 

transmits either a 1 or a 0 to any other XBee in 

its vicinity. A 1 is sent whenever the PIR sensor 

detects an object in its field of vision; otherwise, 

a 0 is transmitted. The 1’s or 0’s are sent out 

once per second.

intinPin=10;

bytevalue=0;

voidsetup(){

Serial.begin(9600);

pinMode(inPin,INPUT);

}

voidloop(){

value=digitalRead(inPin);

Serial.println(value);

delay(1000);

}

This program is written using the Processing 

language, which for all practical purposes is 

a lightweight version of C/C++. The Serial 

class performs all the functions necessary to 

automatically interface the Uno with the XBee 

Shield. The statement

Serial.println(value);

is all that it takes to transmit the data values 

using the XBee Shield.

10_Ch10.indd   203 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



204      Home Automation with Raspberry Pi

All the components were situated on a 

tabletop for convenience. Figure 10-13 shows 

the main controller assembly with all the 

components interconnected with a solderless 

breadboard. 

You should now be ready for the main 

controller software installation once the 

preceding assembly steps have been completed.

Main Controller Software Installation There 

are two scripts to be discussed regarding the 

main controller software installation. The first 

is the Arduino code that is stored in the UNO, 

which has an XBee Shield connected to it. The 

second portion concerns the Python code stored 

on the RasPi, which responds to any alert/alarm 

sent to it by the UNO. The RasPi will then send 

an alert via the Bluetooth module to the Home 

device.

  TauTronic external Bluetooth module.Figure 10-12

 Complete main controller assembly.Figure 10-13

10_Ch10.indd   204 2/1/19   2:02 PM



Chapter 10  n  HA Security Systems      205

if(c==85){

digitalWrite(outPin,HIGH);

}

delay(1000);

}

}

The script is very simple, with the Uno 

constantly receiving characters sent from the 

remote sensor hub with the single statement

charc=Serial.read();

The Serial class once again makes XBee 

data links exceedingly easy, as I mentioned in 

the remote sensor hub software installation 

discussion.

The script tests for a trigger value, which 

when detected will set an Uno GPIO pin high. 

This pin is also connected through a level-shifter 

chip to a RasPi GPIO pin. The RasPi constantly 

monitors or polls its GPIO pin to detect when it 

changes state from low to high. A Python script 

installed in the RasPi will then send an alert 

to the Home device via the external Bluetooth 

module, which is connected to the 3.5-mm audio 

output jack.

I downloaded and installed the Arduino 

IDE on the RasPi from https://www.arduino.cc/

en/Main/Software. Just ensure that you select 

the Linux Arm version from the list shown on 

the right-hand side of the website, as shown in 

Figure 10-14.

Using the Arduino IDE directly with the 

RasPi makes the overall process of creating 

and loading software into the Uno very easy. I 

likewise found making any Arduino software 

modifications a snap by having the IDE natively 

installed. I highly recommend that you use this 

approach versus developing the software on a 

separate PC and then connecting the Uno to the 

RasPi and testing it out.

The Uno software script, which I named 

mainController.ino, is as follows:

intoutPin=10;

voidsetup(){

Serial.begin(9600);

}

voidloop(){

if(Serial.available()){

charc=Serial.read();

digitalWrite(outPin,LOW);

 Arduino IDE installation on the RasPi.Figure 10-14

10_Ch10.indd   205 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



206      Home Automation with Raspberry Pi

device indicating that the PIR sensor has been 

triggered. I actually used a music file to send as 

an alert to the Home device. You can use any 

mp3 or m4a file you want as an alert.

Systems Test I first tested the XBee wireless 

link by powering on the remote transceiver and 

monitoring the output using the integrated 

serial monitor. Just to reiterate, recall that the 

Serial.println(value); statement in the 

Arduino script causes the value both to be 

transmitted and also to appear on the serial 

monitor output screen, if  so enabled. Figure 

10-15 is a screen capture of the serial monitor 

screen.

You should be able to see the few 1’s that 

appear on the screen when I waved my hand in 

front of the PIR sensor. 

The next step in the systems test was 

to confirm that the main controller XBee 

transceiver was receiving and processing the 

data sent from the remote sensor hub. I again 

The Python script, which I named  

receiveTest.py, must be loaded into the RasPi. 

This script is as follows:

importtime

importRPi.GPIOasGPIO

importos

inPin=12

GPIO.setmode(GPIO.BCM)

GPIO.setup(inPin,GPIO.IN)

whileTrue:

val=GPIO.input(inPin)

if(val==1)

os.system('omxplayer-olocal

Wake.m4a')

time.sleep(10.0)

This script is also quite simple. The 

designated GPIO pin is constantly polled to 

check whether its state has changed from low 

to high. If  changed, a system-level call is made, 

which, in turn, sends an audio file to the Home 

 Remote sensor hub serial monitor screen.Figure 10-15

10_Ch10.indd   206 2/1/19   2:02 PM



Chapter 10  n  HA Security Systems      207

The Python script can now be run once the 

pairing operation is finished. Just load the script 

into the RasPi and run this command:

sudopythonreceiveTest.py

I was most pleased when I heard the alert 

“music” coming from the Home device after 

waving my hand in front of the PIR sensor. This 

last action completes the system tests, but I am 

not quite finished with this project because I 

have to discuss how to integrate the Web portion 

with the non-Web software.

Integrating All the Software

I provided a detailed discussion and 

demonstration of how to enable a security 

system using a voice command through a Home 

device. I next showed how to create a distributed 

security system in which a remote sensor 

triggered by infrared energy in a space could 

subsequently trigger an audio alert in a Home 

device. What I haven’t discussed is how to tie the 

Web actions to the distributed security system. 

This is actually a difficult problem because of 

the nature of the two concurrently running 

processes. One process is the RasPi Web server, 

which is constantly monitoring an incoming 

HTTP port and responding to any valid Web 

used the serial monitor to review the received 

characters. Figure 10-16 is a screen capture of 

that serial monitor being run on the host RasPi.

You should be able to see all the GPIO trigger 

events that I generated by waving my hand in 

front of the PIR sensor. The displayed messages 

result from debug print statements that I placed 

in the development code and are not shown in 

the book listing.

At this point I have confirmed a working 

wireless communications link between the 

remote sensor hub and the main controller. The 

next step is test the response action of the RasPi 

on detecting an event sent by the remote sensor 

hub. This would mean installing and running the 

Python script described earlier. However, you 

must first pair the TauTronics module with the 

Home device in order to determine whether the 

audio file is successfully transmitted from the 

RasPi to the Home device. I accomplished this 

pairing operation quite easily using the Google 

Home app installed on my smartphone. The 

process is quite simple in that you first put the 

Home device in pairing mode using the app. The 

app quickly discovers the TauTronics device, 

and you click on the app, confirming that you 

want to pair it. That’s all that is needed for the 

pairing.

 Main controller serial monitor screen.Figure 10-16

10_Ch10.indd   207 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



208      Home Automation with Raspberry Pi

modification I needed was to execute the Python 

script from within the Web server software 

whenever the security system was enabled by 

voice command. This modification worked, 

and I was able to run the complete system 

and generate alerts whenever the PIR sensor 

triggered. Unfortunately, I was not able to 

reinstate the Web server process once I initiated 

the Python script process. This is likely due to 

some complex interactions taking place at the 

Linux kernel level. This limitation is not too 

critical because all you need to do is reboot the 

RasPi, and it will restart the Web server without 

any issues. 

The modified Web server script is listed 

next. I renamed it securityTestExtended to 

differentiate it from the previous version. Note 

that I removed many of the URL extensions not 

required for this project.

requests sent by the Home device. The other 

process is essentially a forever loop in the  

Python script that is constantly polling to 

check on the state of a specific GPIO pin. 

These processes are mutually exclusive and 

basically cannot run simultaneously. After much 

experimentation, I finally arrived at a partial 

solution, which is to use a semaphore or flag, 

which would be used as a signal between the two 

processes. This flag is only a single character, 

either a 0 or a 1, and is stored in an external data 

file I named outdata.txt. The Web server would 

store a 1 in the data file whenever it received 

a Web request to enable the security system. 

Likewise, it would store a 0 in the data file 

whenever the disable Web request was received.

Meanwhile, the Python script was modified 

to read the flag from the data file and only 

take action if  the flag was set to 1. The critical 

#UsingRPi.GPIOandFlaskforthisscript

importRPi.GPIOasGPIO

from flask import Flask
importos

GPIO.setwarnings(False)

app=Flask(__name__)

#Thismethodisinvokedwhenan"/turnonsecurity"extensionisdetected

@app.route("/turnonsecurity",methods=['GET','POST'])

defEnableSecuritySystem():

outf=open('outdata.txt','w')

GPIO.setmode(GPIO.BCM)

GPIO.setup(18,GPIO.OUT)

print"Enablingthesecuritysystem"

GPIO.output(18,GPIO.HIGH)

outf.write('{}'.format(1))

outf.close()

#ExecutethePythonscriptrunningthesecuritysystem

os.system('sudopythonreceiveTestExtended.py')

return"Securitysystemenabled"

# This method is invoked when an "/turnoffsecurity" extension is detected
@app.route("/turnoffsecurity", methods=['GET', 'POST'])

10_Ch10.indd   208 2/1/19   2:02 PM



Chapter 10  n  HA Security Systems      209

Extensions and Modifications

This security system obviously can be extended 

by adding additional sensors. The Web side 

of the code would not have to change, but the 

Python script controlling the system would have 

to be extended to incorporate all new sensors. 

These extensions would be easy if  the sensors 

were binary, meaning on or off, just like the 

PIR sensor. However, the XBee system is fully 

capable of sending significant data over the 

link instead of simple 1’s and 0’s. In this case, it 

would not be hard to use analog sensors with 

the security system, including temperature or 

humidity sensors. In addition, you could easily 

add distance-measurement sensors such as Lidar 

units, which I have discussed in some of my 

other project books.

The system software could also be modified 

to incorporate a logging feature, where system 

status would be stored periodically in a log file 

along with a time stamp. This would provide 

a useful long-term feature for users wanting 

to examine the system environment over a 

prolonged period.

I have also listed the modified Python script 

below. It was renamed receiveTestExtended.py to 

differentiate from the earlier version.

importtime

importRPi.GPIOasGPIO

importos

#Semaphore

outf=open('outdata.txt','r')

val0=outf.read()

inPin=12

GPIO.setmode(GPIO.BCM)

GPIO.setup(inPin,GPIO.IN)

whileTrue:

#CheckiftheGPIOpinishigh

val1=GPIO.input(inPin)

ifval0=='1'andval1==1:

#Playthealert"music"through

#theBluetoothmodule

os.system('omxplayer-olocal

Wake.m4a')

time.sleep(2)

It is my belief  that it would be possible to 

have both processes running concurrently by 

incorporating a multithreaded approach. This 

approach would be quite complicated and 

probably unwarranted considering that this is 

a maker-style project and should be kept to a 

moderate level of complexity. 

defDisableSecuritySystem():

outf=open('outdata.txt','w')

GPIO.setmode(GPIO.BCM)

GPIO.setup(18,GPIO.OUT)

print"Disablingthesecuritysystem"

GPIO.output(18,GPIO.LOW)

outf.write('{}'.format(0))

outf.close()

return“Securitysystemdisabled”

if__name__=="__main__":

app.run(host='0.0.0.0',port=80,debug=True)

10_Ch10.indd   209 2/1/19   2:02 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



210      Home Automation with Raspberry Pi

between the remote sensor hub and the RasPi 

main controller assembly.

Several sections followed that included 

discussions concerning implementation of the 

hardware and software required for the system. 

There was also a discussion of how to set up the 

RasPi Web server software and associated Web 

applets needed for the voice control aspect of the 

project. This part of the discussion was based 

largely on the material presented in Chapter 2.

I next went through a comprehensive 

procedure regarding the Arduino and RasPi 

software required to operate the system. An 

initial systems test was shown, and the system 

was first enabled with a voice command, the 

PIR sensor was triggered, and finally, an alert 

(actually a music file) was heard from the Home 

device. I finished the chapter with a discussion 

of possible system extensions and modifications 

that reasonably could be made to further 

enhance the system.

Summary
I started this chapter on HA security systems 

with a discussion of the basic concepts to be 

considered when designing and building a 

home security system. The nature of risk was 

examined, and I pointed out that while some 

things must be protected, others can be left alone 

because any adverse event associated with those 

items would be of low probability and not cost 

that much.

A discussion regarding the chapter’s project 

was next. This project involved a remotely 

mounted PIR sensor that was wirelessly 

connected to a RasPi controller. The whole 

system was turned on or enabled by a voice 

command spoken to a Google Home device.

I next discussed the overall system design, and 

the requirements were carefully detailed. Then a 

plan was created to meet those requirements. I 

also included a detailed discussion of the XBee 

electronics used to implement the wireless link 

10_Ch10.indd   210 2/1/19   2:02 PM



C H A P T E R  1 1

Integrated Home 
Automation Systems

211

I HAVE DISCUSSED A VARIETY of  HA systems in 

this book. They hopefully will be useful on their 

own, but they are specific to certain tasks such 

home HVAC or security. This brief  chapter 

should provide you with an overview of useful 

concepts needed to tie different systems together.

The term integration is often used to describe 

this tying operation. It is also common in the 

HA community or industry to consider specific 

HA system as subsystems when considering 

building an overarching HA control system. 

The question obviously arises as to how this 

integration can be achieved considering that 

various subsystems can have widely different 

controller architectures and underlying software 

platforms.

The answer is that there is no one solution 

that solves this problem. HA manufacturers 

have developed and marketed many different 

solutions, but most have tended to have the 

unsatisfactory approach of simply buying all the 

subsystems from their own brand and not having 

to worry about different protocols or hardware 

interfaces. I personally find this approach rather 

unpleasant and perhaps very expensive if  you 

have already invested in a nonhomogeneous mix 

of subsystems. I propose a significantly different 

approach that I have borrowed from the field of 

software design patterns.

Adapters
We have all encounter adapters of one sort or 

another in our daily lives. One common adapter 

that you might not think as an adapter is the 

closed-captioning (CC) feature found on most 

modern TVs. CC is needed for TV users who 

are either hard of hearing or deaf. It adapts the 

normal TV audio output to a form suitable for 

the hearing-impaired user. Now consider the 

shapes shown in Figure 11-1.

Trying to fit these two shapes together is 

simply not possible. However, if  you introduce 

a third shape into the figure, as shown in Figure 

11-2, it suddenly is possible to fit all the parts 

together.

  Incompatible shapes.Figure 11-1

11_Ch11.indd   211 2/1/19   2:03 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



212      Home Automation with Raspberry Pi

but it does raise the overall costs and difficulty 

in implementing the system. Fortunately, many 

commercial subsystems being manufactured 

today exclusively use WiFi for data links, so this 

is not a real concern. It is just something you 

should keep in mind when selecting subsystems 

for a total HA solution.

One-Stop Control
It only makes logical sense to have a single point 

of control for an HA system, or what I refer to 

as one-stop control. This control point can be 

implemented in a variety of ways from a tablet-

like touch panel device as shown in Figure 11-3 

to personal voice assistants such as the Amazon 

Echo device or the Google Home device.

Creating a one-stop solution has become quite 

easy if  you elect to use a voice assistant such 

as the Home device. Figure 11-4 shows just a 

few of the dozens of websites that are available 

to support a vast array of manufacturer HA 

systems and services.

It has become an almost trivial effort to set up 

applets to voice control a vast array of diverse 

HA subsystems using the procedures I detailed 

in Chapter 2. I believe that a similar effort using 

touch panel control devices likely would be more 

difficult than voice-controlled devices. This is 

This new part is called an adapter, and it 

fixes the previous incompatible fit problem. 

The adapter solution is obvious when shown 

as a graphic in a figure, but it is not so obvious 

when considered as a programming or coding 

effort. The takeaway from this example is that 

the adapter has two different interface views 

depending on which side you view. Translated to 

programming terms, this means that the adapter 

code first receives incoming data in a specified 

format compatible with the data source. It then 

transforms that code into a format suitable 

for the outgoing data sink, inserting whatever 

“missing” pieces are required to match the 

output requirements. In most cases, the adapter 

code is bidirectional; that is, the output sink 

becomes the input source and the input source 

translates to an output sink.

There can be one big issue with this adapter 

approach, and it is directly related to how the 

communication links are implemented between 

data sources and sinks. There generally is no 

issue if  data are sent and received using WiFi 

because the underlying data formats are totally 

compatible between all sources and sinks. 

However, if  the data are communicated using 

a wireless specialized format such as analog 

RF, Z-Wave, or the XBee technology, then the 

adapter approach becomes a bit more complex. 

The data-source part of the adapter must then 

use compatible hardware to receive or transmit 

data to the desired subsystem. It isn’t hard to do, 

  Incompatible shapes with an adapter.Figure 11-2

  Honeywell Tuxedo Touch HA system 
controller.

Figure 11-3

Adapter

11_Ch11.indd   212 2/1/19   2:03 PM



Chapter 11  n  Integrated Home Automation Systems      213

This device has ready access to dozens of 

manufacturer-provided Alexa Skills, which are 

basically equivalent to the applets created for the 

Google Home devices. Again, I believe that it 

would be very easy to create a one-stop solution 

using the Echo Show, which has an added 

advantage of including a visual component to 

HA system control.

Shared Sensors and Actuators
It makes perfect sense to share sensors among 

HA subsystems to help minimize cost and 

increase overall efficiency. For example, sharing 

light sensors between security and HVAC 

subsystems would likely be possible because 

both employ the same sensor types, but for 

different reasons. The success in sharing depends 

primarily on how a particular sensor connects 

with a given subsystem. For instance, if  a 

sensor uses WiFi to broadcast or publish its 

due in large part to the immense popularity of 

the voice devices and HA manufacturers’ desire 

to participate in this huge potential and actual 

market. There is one voice assistant device that 

combines both voice commands and video 

technology. This device is Amazon’s Echo Show, 

which is pictured in Figure 11-5.

 Amazon’s Echo Show.Figure 11-5

 Sample of the dozens of readily available Web request websites.Figure 11-4

11_Ch11.indd   213 2/1/19   2:03 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



214      Home Automation with Raspberry Pi

Script Automation
It is often the case that an HA system provides 

a prescribed set of actions, which may be based 

on the time of day or user-requested actions. 

For instance, a user arriving home after a busy 

workday may very well want and deserve the 

HA system to set the home temperature to 

an appropriate occupancy level, start playing 

a favorite song through an AV system, close 

automated blinds/shades, set room lighting, 

and other user-desired tasks. The integrated 

HA system should follow a script that initiates 

these various subsystem tasks based on time 

of day, a trigger event, or manual activation. 

This type of script is also known as a macro 

in HA terminology and simply consists of a 

list of prestored subsystem commands with 

appropriate argument values. The commands 

are typically executed in serial fashion because 

some tasks are predicated on the successful 

completion of a prior task. 

A script must be carefully constructed to 

accommodate abnormal events that can and will 

likely occur. For instance, it may happen that 

the AV subsystem has a problem preventing the 

favorite song from being played. This situation 

should not hinder the script from starting and 

completing all the other tasks contained in the 

script. The user should also be notified of the 

partial failure happening within the automated 

script.

One ideal goal of an automated script would 

be that a single button press or voice command 

could create the perfect ambiance for a dinner 

party, a romantic evening at home, or a party 

of friends on a back patio or deck. You should 

have no problem finding the appropriate music 

or video that you will enjoy when your AV 

data, then any properly equipped subsystem 

can receive or subscribe to those data without 

issue or conflict with other subsystems. By 

contrast, sharing would be very problematic 

if  a sensor is hardwired and uses a proprietary 

communications protocol to link to a particular 

subsystem. I also suggest that the chances of 

successfully sharing sensors would be greatly 

improved by selecting HA subsystems made 

by the same manufacturer. There always exist 

the possibilities of inherent incompatibilities in 

sensor usage even with wireless devices using 

standardized communications protocols such 

as WiFi or Bluetooth. HA manufacturers 

sometimes do not carefully comply with 

implementing published standards despite 

advertising that their sensors are compliant with 

a particular standard.

Sharing actuators is often an easier task than 

sharing sensors. This is due to the fact that 

most actuators simply respond to commands 

rather than generating data. For example, an 

architectural lighting control subsystem might 

employ a variety of light sources including 

incandescent, compact fluorescent, halogens, 

and LEDs, which may also be required to be 

dimmed and/or brightened to preset levels. A 

security subsystem likewise might employ the 

same types of light sources to illuminate an 

area based on any trigger events detected by the 

subsystem. Sharing the same lighting actuators 

between the systems is easily accomplished 

using well-known control circuits that provide 

isolation between connected subsystems but 

still accomplishing similar goals such as energy 

savings, providing visual interest, enhancing 

security, or just plain setting a mood for certain 

occasions.

11_Ch11.indd   214 2/1/19   2:03 PM



Chapter 11  n  Integrated Home Automation Systems      215

Suppose that you repeatedly invoke a 

particular script every workday but also modify 

it by including some additional tasks such as 

playing a new song or perhaps controlling some 

extra lighting not included in the original script. 

An HA controller equipped with AI capabilities 

will notice the repeated modifications to an 

existing script and query you on whether or not 

you would like to modify the script such that you 

will not have to manually input the additional 

tasks each time the script executes. Pattern 

recognition is clearly involved in this process, 

and technically, another AI feature called genetic 

programming (GP) also would be involved. GP 

happens when a program automatically creates 

or modifies another program. Often GP uses 

random mutations in an effort to improve on 

an existing program in some fashion; however, 

in this situation, the modifications are already 

clearly defined and can take place without the 

need for random permutations.

Classification is another important AI 

topic that is also directly relevant to an HA 

application. Suppose that you have a video 

doorbell connected to an HA controller 

equipped for video image recognition. The 

system could then analyze a facial image and 

immediately invoke a script associated with that 

image. Imagine a situation where a couple shares 

a home. The husband or first significant other 

could arrive home first, and a script associated 

with that person would be run. Similarly, the 

second person in the relationship could arrive 

first, and a script associated with that person 

would be run. Of course, it would be a tossup 

if  both arrived simultaneously, and the system 

might be programmed to do a random draw in 

order to determine which script would be run.

equipment is managed by a HA subsystem. On 

command, the room lights dim, the shades close, 

and the appropriate equipment turns on. All you 

need to do is relax and enjoy the scene.

Additional Subsystems  
That May Be Automated
The previously mentioned subsystems are among 

the most popular ones to be controlled by an 

integrated and automated HA system. However, 

just about any product or system that uses 

electrical or battery power can also be integrated 

into an HA system. Some of these systems 

include but are not limited to 

■n Garage doors 

■n Swimming pools and spa systems

■n Motorized security gates

■n Video doorbells 

■n Electronic door locks 

■n Any motorized equipment (e.g., drapes, 

blinds, home theater screens) 

■n Irrigation systems

■n Artificial ponds with waterfall features

■n Decorative fountains 

AI and HA
I already discussed an important AI topic, 

namely fuzzy logic (FL), in Chapter 8, where 

FL was used to control an HA HVAC system. 

However, AI can have a far greater impact 

regarding HA systems. Classification, prediction, 

and pattern recognition are some of the key 

functionalities that can be accomplished using 

AI. I will start with pattern recognition and how 

it might be used in an HA system.

11_Ch11.indd   215 2/1/19   2:03 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



216      Home Automation with Raspberry Pi

implies, means looking toward the future and 

trying to determine what is going to happen in 

the near term. A reasonable example of using 

prediction in an HA system would be employing 

an outside temperature sensor to help predict 

how to optimally operate an HVAC system. If  

the outside temperature is falling rapidly, the 

system could accurately predict that it might 

need to go into an aggressive heating mode. 

Similarly, if  the temperature is rising rapidly, 

the system would counteract by entering a rapid 

cooling mode.

These examples just scratch the surface on 

how applied AI could improve an HA system. 

I recommend my book, Beginning Artificial 

Intelligence with the Raspberry Pi, if  you want 

to learn more about AI and how it can be done 

using only a RasPi.

Video classification also may be appropriate 

in a security subsystem in which a sensor has 

been triggered by some unknown “intruder.” 

The system could attempt to classify the intruder 

as human or nonhuman and take appropriate 

actions. If  the intruder is human, there could 

be another attempt at facial recognition in 

order to ascertain whether the intruder was in 

fact a known entity or completely unknown. 

If  unknown, the system would next take 

appropriate steps at notifying authorities and 

generating alarm sounds and/or voice alerts. 

A simple greeting would be generated if  the 

target was identified. For nonhuman intruders, 

a warning sound might be generated to scare 

off  the animal, unless the system included 

image recognition of family pets or obviously 

nonthreatening animals such as rabbits.

Prediction is the last AI topic I will discuss 

regarding an HA system. Prediction, as the name 

11_Ch11.indd   216 2/1/19   2:03 PM



Index

217

Numbers
1-Wire Protocol vs. one-wire protocol, 171

A
AC lamp

extending control functions, 45–49
extending RasPi Google Home device, 65–69
PST2 wireless control, 52–53
RasPi Google Home device with servo, 72
RasPi GPIO control with Amazon Echo, 79–80
RasPi GPIO pin control skill, 91–94
testing RasPI GPIO with Fauxmo, 79–80

account setup screen, Project Things software 
installation, 126

ACK (acknowledgement) byte, Z-Wave, 117
action, automating Home Assistant, 107–108
action level, simple HVAC FL, 148
activity controls, Voice Assistant installation, 26–27
actuators, sharing among HA subsystems, 213–214
Adapt intent parser, Mycroft, 130
adapters, integrated HA systems, 211–212
ADC (analog-to-digital converter)

MCP3008 microchip. See MCP3008 ADC microchip
ZW3102 microchip, 120–121

Add Things screen, Project Things software installation, 
126–127

Aeotec A-Stick (Gen5), Things Gateway, 125
aggregation, simple HVAC FL, 153
air-conditioning systems, dehumidification, 162
AIY Voice Kit. See Google AIY Voice Kit for the 

Raspberry Pi
“Alexa, discover devices” command, 75
Alexa skill

building/configuring, 87–89
building/configuring RasPi GPIO pin control skill, 

92–94
creating from scratch, 84–85
implementing, 85–86
testing, 89–90
understanding, 76–78

Alexa Skills Kit (ASK), 76
“Alexa, turn on the Wemo” command, 75–77

Amazon Echo, controlling RasPi GPIO with
Alexa skill, 76–78
building/configuring RasPi GPIO pin control skill, 

91–94
creating Alexa skill from scratch, 84–90
Fauxmo, 78–79
Fauxmo server, 83–84
overview of, 75
Parts List, 75
Python control script, 81–83
summary, 94
testing, 79–80
Wemo demonstration, 75–76

Amazon Echo, one-stop solution for integrated HA, 
212–213

Amazon Echo Show, 213
ambient air temperature, dew point and, 161–162
ambient temperature, PIR sensor affected by, 181–182
analog servos, 69–70
analog-to-digital converter (ADC)

MCP3008 microchip. See MCP3008 ADC microchip
ZW3102 microchip, 120–121

Android, Mycroft Enclosure for, 130
applet creation

AC-powered lamp demonstration, 47
ifttt.com, 34–41
turning off  LED using voice command, 43

Application layer, Z-Wave, 118
architecture, designing HA solution, 2
Arduino Uno board, HA security system

main controller assembly, 197–198
remote sensor hub block diagram, 191–192
remote sensor hub schematic, 196–197

artificial intelligence (AI)
impact on HA systems, 215–216
natural human interaction (NHI) and, 16–17

artificial neural network (ANN), Precise package in 
Mycroft, 131

ASK (Alexa Skills Kit), 76
audio setup, RasPi emulating Google Voice Assistant, 55–57
augmented simple HVAC system, 162–164
authentication, RasPi to Google Cloud platform, 60–64
automation rules, Home Assistant, 108–111

12_Index.indd   217 2/1/19   2:03 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



218      Index

one-stop control for integrated HA systems, 212–213
Z-Wave controllers, 118–119

controlOut, simple HVAC FL, 146–148, 150–151
cool, simple HVAC FL, 146–148, 150–151, 153
cost, mitigating HA security risk, 190–191
CRC (cyclic redundancy check), Layer 3 of Z-Wave, 117
Create OAuth Client ID, installing Google Cloud 

project, 59–60
Create Skill button, Amazon Echo, 87, 92
credentials

Google Cloud project installation, 59–60
Voice Assistant installation, 23, 25–26

cyclic redundancy check (CRC), Layer 3 of Z-Wave, 117

D
DAC (digital-to-analog converter), MCP3008 chip, 176
Data Link layer, Z-Wave, 117
DEFAULT directory, Picroft configuration, 135
defuzzification process, simple HVAC FL, 146, 148–150, 

153
dehumidification rules, augmented simple HVAC 

systems, 162–164
Developer Tool icon, Home Assistant, 108–109
device tracker component, Home Assistant, 111–112
devices, integrations for HA OS, 106–107
dew point, augmented simple HVAC systems, 161–164
DHT11 humidity/temperature sensor, 170–173
differential mode, MCP3008 microchip, 176
digipeating, Z-Wave, 116, 117
digital-to-analog converter (DAC), MCP3008 chip, 176
disk images, for RasPi, 4
distance measurements, ultrasonic sensor, 185
Domoticz, open-source HA solution, 97
driver connections, voice HAT module, 19
DynDNS-managed URL, RasPi Web server on 

Internet., 38–39

E
electrically erasable programmable read-only memory 

(EEPROM) chip, voice HAT module, 18
embedded microprocessor, 184–185
Enclosures, Mycroft, 130
end-of-frame (EoF) byte, Layer 2 of Z-Wave, 117
end point devices (slaves)

MCP3008 microchip, 177
Z-Wave, 118–119

energy savings, boosting with ultrasonic sensor, 187
Etcher, writing Raspbian image to micro SD card, 6
EventGhost, open-source HA solution, 97
expert decision system, simple HVAC FL, 147, 151
extensions, HA security system, 209
external IP address, connecting RasPi to Google Home 

device, 38

F
Fauxmo

directly controlling RasPi GPIO pins, 78–80
Wemo demonstration, 83–84

feedback control, simple HVAC FL system, 143–144

B
BCM mode, RasPi GPIO pins, 12
Beginning Artificial Intelligence with the Raspberry Pi 

(Norris), 216
benefit, mitigating HA security risk, 190–191
bidirectional level-shifter chip, HA security system, 189, 

205
bisector defuzzification method, simple HVAC FL, 

148–149
bit-serial communication interface pins, voice HAT, 20–21
blink program, running, 15–16
Bluetooth devices, Home Assistant presence detection, 

111–112
Build button, Alexa skill, 89

C
Calaos, open-source HA solution, 97
callback functions, authenticating RasPi to Google 

Cloud platform, 61–62
capacitive DHT11 sensor, 170
Carrier-Sense Multiple Access with Collision Detection 

(CDMA/CD) hardware, Layer 1 of Z-Wave, 
116–117

CC (closed-captioning) TV feature, as adapter solution, 
211–212

centroid defuzzification method, simple HVAC FL, 
148–149

Choose a Service screen, ifttt.com, 34–35
Clapper power device, restricted operational mode in 

HA, 61–62, 64–65
classification, impact of AI on HA systems, 216
closed-captioning (CC) TV feature, as adapter solution, 

211–212
closed-source HA hardware/software, 100
Cloud, connecting RasPi to Google Home device using, 

33–34
CMUSphinx, 131
cold membership function

LED mode indicators, 158
simple HVAC FL, 144, 146–148, 151–155

comfort, dew point vs. personal, 162
comfort zone, simple HVAC FL system, 143–144
comfortable membership function

augmented simple HVAC systems, 162–164
LED mode indicators, 158

comfortable membership function, simple HVAC FL, 
144–148, 151–155

computer operating systems, 95–96
condition, automating Home Assistant, 107–108
configuration, Picroft, 134–136
configuration.yaml file, Home Assistant

automation example, 109
configuring integrations, 107
modifying using Configurator, 103–104
presence detection setup, 112

Configurator, modifying Home Assistant, 103–104
control technologies

designing HA architecture, 2–3
extending control functions, 45–49

12_Index.indd   218 2/1/19   2:03 PM



Index      219

Google AIY Voice Kit for the Raspberry Pi
HAT module as key component in, 17–20
installation. See Google Voice Assistant, software 

installation
natural human interaction with, 17

Google Assistant API, 22–23, 61–62
Google Assistant Software Development Kit (SDK) for 

RasPi, Python 3, 58
Google cloud (GC), 22
Google Cloud Platform

authenticating RasPi to, 60–64
Google Cloud project installation, 58

Google cloud project (GCP)
installing and enabling, 58–60
overview of, 22

Google Home device
configuring, 33
integrating all software, 207–208
main controller software installation, 204–207
main controller Web software, 199–204
as one-stop solution for integrated HA, 212–213
overview of, 31–33
as voice assistant for HA security system, 198–199

Google Home device, connecting RasPi to
demonstration circuit, 43
extending control functions, 45–49
ifttt.com Web service, 34–41
overview of, 33–34
Parts List, 31
PST2 wireless control, 49–53
RasPi Web server software, 41–43
summary, 53–54
test run, 43–45

Google Remote Procedure Call (gRPC), 23, 24
Google Voice & Audio Activity control, Voice Assistant 

installation, 26–27
Google Voice Assistant, Alexa Skills Kit is Amazon’s 

answer to, 76
Google Voice Assistant, RasPi emulating

audio setup, 55–57
authenticating RasPi to Google Cloud, 60–64
extending default functions of RasPi Google Home 

device, 64–69
extending RasPi Google Home device using servo, 

69–74
installing/configuring Python 3, 57–58
installing/enabling Google Cloud project, 58–60
overview of, 55

Google Voice Assistant, software installation
activity controls, 26–27
create Google account, 22
create Google cloud project, 22
download and rename credentials, 25–26
enable Google Assistant API, 22–23
extending voice kit functionality, 28–30
Google Remote Procedure Call (gRPC), 24
login to Google cloud (GC), 22
obtain credentials, 23–25
overview of, 22

Festival Lite (Flite) speech synthesis system, 130
field-effect transistor (FET), driver channels on HAT 

board, 19–20
FL (fuzzy logic) and HA. See Z-Wave
FL (fuzzy logic), complex HVAC system

augmented simple HVAC system, 162–164
humidity control, 161–162
overview of, 160–161
Parts List, 143
Python script for, 164–167
summary, 168
testing, 167–168

FL (fuzzy logic), simple HVAC system
aggregation, 153
basic FL concepts, 144–145
defuzzification, 153
fuzzification, 151–152
generating expert system rules, 151
implementing FL algorithm, 145–150
inference, 152–153
LED mode indicators, 156–159
overview of, 143–144
Parts List, 143
Python script, 153–155
Python script for, 150–151
summary, 168
testing, 155–156
testing LED mode indicators, 159–160

Flask-ASK package, Alexa skill, 85–86
FLC (FL controller), 143–145
Flite (Festival Lite) speech synthesis system, 130
Fresnel lens, PIR sensor, 182–183
Fritzing diagrams

extending RasPi Google Home device, 65–66, 70
LED indicator, 62–63
resistive DHT11 sensor, 171
setting up projects using, 14–15
testing control of RasPI GPIO with Fauxmo, 79–80

full duplex communication, SPI, 177
fuzzification step, simple HVAC FL, 146, 151–152
fuzzy logic

complex HVAC. See FL (fuzzy logic), complex 
HVAC system

and HA. See Z-WAve
simple HVAC. See FL (fuzzy logic), simple HVAC 

system

G
gateway configuration/setup, Project Things software, 

126–127
GC (Google cloud), 22
GCP (Google cloud project)

installing and enabling, 58–60
overview of, 22

genetic programming, AI on HA systems, 215–216
git application, wiringPi installation, 12
Google account

Google Cloud project installation, 58
Google Voice Assistant installation, 22

12_Index.indd   219 2/1/19   2:03 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



220      Index

proprietary/closed-source hardware/software, 100
security systems. See security systems, HA
sensors. See sensors
services, 108–109
summary, 112–113
Z-Wave and. See Z-Wave

handshake, Layer 3 of Z-Wave, 117
hardware

closed-source HA solutions, 100
Google Home device, 32
GPIO demonstration setup, 14–15
main controller installation for HA security system, 

203–204
Mycroft, 131–133
Mycroft Enclosures, 130
proprietary HA solutions, 100
setup for TMP36 sensor, 178
Xbee, 193–195

Hardware Attached on Top (HAT), AIY Voice Kit, 17–21
Hass.io, Home Assistant

editing configuration with Samba, 104–105
installing HA OS, 101–103
modifying using Configurator, 103–104
as open-source HA solution, 99–100

hazards, common security, 190–191
header pin layout, GPIO, 11–12
heat

LED mode indicators, 158–159
simple HVAC FL, 146–147, 151–155

Henrie, Nathan, 78–79
hobby-grade servos, extending RasPi Google Home 

device, 69–74
Home Assistant

automating, 107–108
configuring integrations, 106–107
editing configuration using Samba, 104–105
installing with Hass.io, 99–100, 101–103
modifying using Configurator, 103–104
as open-source HA solution, 97–98
presence detection setup in, 111–112

Home ID, Z-Wave network, 118
home theater automation, EventGhost for, 97
hop kill, Z-wave transceiver, 116
hops, Z-wave transceiver, 116
hot membership function

LED mode indicators, 158
simple HVAC FL, 144, 146–148, 151–155

Hue light
Home Assistant for, 101, 109
Mycroft Philips Hue Skill for, 138, 140–141

humidity control, HVAC systems, 161–164
HVAC FL systems

complex. See FL (fuzzy logic), complex HVAC 
system

simple. See FL (fuzzy logic), simple HVAC system

I
ID, GPIO pin, 12, 13
if/then inferential rules, FL systems, 148

Google Voice Assistant, software installation (Cont.)
summary, 30
testing voice kit, 27–28

GP (genetic programming), impact of AI on HA, 
215–216

GPIO demonstration
AC-powered lamp, 46–47
Hardware Attached on Top (HAT) module, 17–20
hardware setup, 14–15
make utility, 16
microphone array module, 21
natural human interaction (NHI), 16–17
overview of, 12–13
pushbutton-LED combination, 21–22
software setup, 15–16

GPIO (general purpose input/output). See Amazon 
Echo, controlling RasPi GPIO with

GPIO pins
demonstration. See GPIO demonstration
overview of, 11–12
testing passive infrared sensor, 183–184
ultrasonic sensor, 185–187
using Python commands to control, 42
Z-Wave network devices, 118–119
ZW3102N Module, Zensys chip design for Z-Wave, 

121
GPIO Skill, Mycroft, 137–138
GPS, Home Assistant presence detection, 111–112
graphical user interface (GUI), computer operating 

systems, 95
gRPC (Google Remote Procedure Call), 23, 24

H
HA (home automation) projects, design/build

generalized design approach, 2–3
Google Voice Assistant installation, Google Voice 

Assistant software installation
GPIO demonstration. See GPIO demonstration
GPIO overview, 11–12
overview of, 1
Parts List, 1–2
RaspBerry Pi setup. See RasPi (Raspberry Pi) setup
RasPi setup. See RasPi (Raspberry Pi) setup

HA OS (home automation operating systems)
automating Home Assistant, 107–108
automation example, 109–111
computer operating systems, 95–96
configuring integrations, 106–107
editing Home Assistant configuration with Samba, 

104–105
installation of, 101–103
internal states, 108
introduction to, 95
modifying Home Assistant using Configurator, 

103–104
open-source solutions, 97–100
overview of, 96–97
Parts List, 95
presence detection setup, 111–112

12_Index.indd   220 2/1/19   2:03 PM



Index      221

Knowles digital microphone, 20–21

L
largest-of-maximum defuzzification method, HVAC FL 

systems, 148–149
layers, Z-Wave network model, 116–118
LEDs

Google Home device hardware, 32
HA security system, 201
Mycroft GPIO Skill, 136–138
RasPi authentication to Google Cloud, 61–62
RasPi connection to Google Home device, 34, 43–45, 

66–69
RasPi GPIO pin control skill, 91–94
RasPi Web server software, 41–43
simple FL HVAC modifications, 156–160
simple HVAC FL, 150
testing control of RasPI GPIO with Fauxmo, 79–80
testing passive infrared sensor, 183–184
turning on/off  by connecting to GPIO pin. See GPIO 

demonstration
linguistic variables/terms, simple HVAC FL, 144–146
LinuxMCE, open-source HA, 98
local IP address, RasPi connection to WiFi, 10
Localization Options menu, RasPi software 

configuration tool, 8
low null bit, MCP3008, 177

M
main controller, HA security system

assembly, 197–198
software installation, 204–207
Web software, 199–204

mains control device, HA for safety, 3
make utility, GPIO demonstration, 16
makefile, make utility, 16
manufacturer’s pin ID, RasPi GPIO pins, 12
Mark I and II, Mycroft hardware, 130–133
master, SPI, 177
matplotlib library, simple HVAC FL, 150
maximum operator, simple HVAC FL, 148–149
MCP3008 ADC microchip

initial testing, 178–181
inner workings, 176
overview of, 175–176
using SPI to communicate with RasPi, 177–178

membership functions, complex FL HVAC systems
augmented simple HVAC systems, 162–163
complexity of generating, 161
Python script, 164–166

membership functions, simple FL HVAC systems
fuzzification, 151–153
humidity, 163–164
LED mode indicators, 157–159
overview of, 144–145, 146–150
Python script, 153–155

memory game skill, Alexa, 85–90
MEMS (micro-electromechanical systems) microphone 

array, Google Home device, 32

If This, Then That (IFTTT), Home Assistant 
integration with, 97

ifconfig command, RasPi connection to WiFi, 10
ifttt.comWeb service, RasPi connection to Google 

Home device, 34–41
inclusion operating mode, Z-Stick, 122–123
inference, simple HVAC FL, 152–153
initial test, HA security system, 201
input. See GPIO demonstration
input variables, simple HVAC FL, 150
installation

DHT11 sensor, 171–173
Google Voice Assistant. See Google Voice Assistant, 

software installation
Home Assistant HA OS, 101–103
Picroft, 133–134
Project Things by Mozilla.org, 125–127
security system software, 202–206
software for DHT11 sensor, 171–173
wiringPi. See GPIO demonstration

integrated HA systems
adapters, 211–212
additional subsystems for, 215
AI and HA, 215–216
one-stop control, 212–213
overview of, 211
script automation, 214–215
shared sensors and actuators, 213–214

integration
of all HA security system software, 207–209
configuring devices/services for HA OS, 106–107
of home automation systems, 211

intent parser, Mycroft, 130
interaction model component, Alexa skill, 77
interchip circular buffer arrangement, SPI, 177
interconnection schematic, ultrasonic sensor, 185–186
Interfacing Options menu, RasPi software configuration, 

8–10
internal HA OS states, Home Assistant automation, 108
invocation component, Alexa skill, 77
ioBroker, open-source HA, 98
IP address

NOOBS image configuration, 38
RasPi connection to WiFi, 10

IS (ID server IS), SUC, 119
ISM (industrial, scientific, and medical) band, Z-Wave 

and HA, 115–116, 120

J
Jeedom, open-source HA solution, 98
JSON (JavaScript Object Notation)

building Alexa skill, 92
building/configuring Alexa skill, 88
installing/enabling Google Cloud project, 60
Mycroft intent parser converting language into, 130
Voice Assistant installation credentials, 25–26

K
Kane, Surendra, 78

12_Index.indd   221 2/1/19   2:03 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



222      Index

network models
OSI, 116
Z-Wave, 116–118

New Out Of the Box Software (NOOBS). See NOOBS 
(New Out Of the Box Software) image

New Project, Google Cloud Project, 58–59
ngrok utility, Alexa skill, 86, 89, 93
NHI (natural human interaction), GPIO demonstration, 

16–17
Nmap utility, presence detection in Home Assistant, 

111–112
no-action mode

LED mode indicators, 158–159
simple HVAC FL, 146–148, 151, 155

nodes
Z-Wave demonstration, 121–122
Z-Wave transceiver, 116

NOOBS (New Out Of the Box Software) image
configuring, 6–10
downloading for RasPi, 4
writing to micro SD card, 4–5

NTC (negative temperature coefficient), DHT11  
sensor, 170

NUI (natural user interface), 17
numpy library, simple HVAC FL, 150

O
OAuth 2.0 authentication, Voice Assistant installation, 

23, 25
one-stop control solution, integrated HA systems, 212–213
one-wire protocol, resistive DHT11 sensor, 171
Open Home Automation Bus (openHab), 98
open-source HA solutions

Calaos, 97
Domoticz, 97
EventGhost, 97
Hass.io, 99–100
Home Assistant, 97–98
ioBroker, 98
Jeedom, 98
LinuxMCE, 98
Mister House, 98
Mycroft and Picroft. See Mycroft
openHab, 98
OpenMotics, 99
OpenNetHome, 98
securing HA applications with, 96
Smarthomatic, 99

Open System Interconnection (OSI) network model, 116
openHab (Open Home Automation Bus), 98
OpenMotics, open-source HA solution, 99
OpenNetHome, open-source HA solution, 98
OpenSTT development, Mycroft, 131
OpenZWave-compatible dongle (adapter), Project 

Things by Mozilla.org, 125
operating systems

computer, 95–96
home automation. See HA OS (home automation 

operating systems)

mesh, as group of Z-Wave transceiver, 116
metadata, restricting operational modes in HA, 61–62, 

64–65
micro-electromechanical systems (MEMS) microphone 

array, Google Home device, 32
micro SD card

configuring NOOBS image, 6–10
installing Home Assistant HA OS, 101
obtaining for RasPi storage, 4
Picroft installation, 133–134
writing NOOBS image to, 4–5

microcontroller, Z-Wave, 120–121
microphone array module, 21, 32
microphone setup, RasPi emulating Google Voice 

Assistant, 56–57
microprocessors, Google Home device hardware, 32
middleware components, Mycroft, 131
Mimic (speech synthesis), Mycroft, 130
mini WiFi Smart miniplug, 75–76
Mister House, open-source HA solution, 98
mitigation, HA risk, 190–191
modus ponens

ifttt.com Web service, 34
simple HVAC FL, 147

MOM (mean-of-maximum) defuzzification, simple 
HVAC FL, 148–149

Montgomery, Joshua, 129–130
The Moon Is a Harsh Mistress (Heinlein), 130
most significant bit (MSB), MCP3008 chip, 177
Mozilla IoT Gateway, 125–127
Mozilla.org, Project Things by, 125
Mycroft

Core, 131
GPIO Skill, 136–138
hardware, 131–133
Home and Mycroft API, 131
Mycroft Skills, 138–140
overview of, 129–130
Parts List, 129
Philips Hue Skill, 138, 141–142
Picroft for RasPi 3, 133–136
structure, 130–131
summary, 141–142

Mycroft Skills
GPIO Skill, 136–138
list of available, 138–140
Philips Hue Skill, 138, 140–141

mycroft.conf, Picroft configuration file, 134–136

N
NACK (negative acknowledgement) byte, Z-Wave, 117
naming conventions, GPIO pins, 13
nano editor, GPIO, 15
natural human interaction (NHI), GPIO demonstration, 

16–17
natural user interface (NUI), 17
negative acknowledgement (NACK) byte, Z-Wave, 117
negative temperature coefficient (NTC), DHT11 sensor, 

170

12_Index.indd   222 2/1/19   2:03 PM



Index      223

Putty, SSH login to RasPI via, 123–124
PWM (pulse-width modulation) waveform

analog servos, 69
Python control script incorporating, 70–73

Python 3 environment, installing/configuring, 57–58
Python library (RPi.GPIO)

installing before entering Python script, 62–64
Python control script and PWM, 70–73
RasPi Web server software, 42

Python script
AC lamp demonstration, 47–48
complex HVAC FL, 164–167
controlling RasPi GPIO with Amazon Echo, 78–79, 

81–83
extending RasPi Google Home device, 66–68, 70–73
implementing Alexa skill, 85–89
implementing Web server on RasPi, 41–42
RasPi authentication to Google Cloud, 62–64
RasPi GPIO pin control skill, 91
simple HVAC FL, 150–151, 153–155
testing Alexa skill, 89
testing simple FL HVAC, 155–156

R
radio-frequency (RF) transmitter/receiver, PST2 power 

device wireless control, 49–53
random mutations, AI genetic programming, 215
Raspberry Pi Electronics Projects for the Evil Genius 

(Norris), 3
Raspberry Pi Projects for the Evil Genius (Norris), 3
raspi-config utility, configuring NOOBS image, 7–10
RasPi (Raspberry Pi)

connecting to Z-Wave network, 123–125
general-purpose input/output, 11–12
Google Home Device. See Google Home device, 

connecting RasPi to
Google Voice Assistant. See Google Voice Assistant, 

RasPi emulating
GPIO control with Amazon Echo. See Amazon 

Echo, controlling RasPi GPIO with
GPIO demonstration. See GPIO demonstration
HA security system. See software, HA security 

system
implementing Web server, 41–43
main controller assembly for HA security system, 

197–198
open-source personal voice assistant, Picroft, 

133–136
SSH login to, 123–124
TMP36 sensor analog-to-digital conversion for, 

175–176
RasPi (Raspberry Pi) setup

configuring NOOBS image, 6–10
overview of, 3–4
updating/upgrading Raspbian distribution, 10–11
using RasPi Model B or B+ in this book, 3
writing NOOBS image to micro SD card, 4–5
writing Raspbian image to micro SD card, 5–6

Raspbian distribution, updating and upgrading, 10–11

operational block diagram, ultrasonic sensor, 185
OSI (Open System Interconnection) network model, 116
output. See GPIO demonstration
output variable, simple HVAC FL, 148–149, 150

P
packet types, Z-Wave network, 118
parking detection, with ultrasonic sensor, 187
passive infrared sensor. See PIR (passive infrared sensor)
password, Home Assistant HA OS and, 102
pattern recognition, impact of AI on HA systems, 

215–216
PCB (printed-circuit board) solder pads, voice HAT 

servo to RasPi GPIO pin, 18–29
Perl scripts, Mister House open-source HA, 98
personal area network (PAN), Zigbee protocol as, 195
Philips Hue Skill, Mycroft, 138, 140–141
Physical layer, Z-Wave, 116–117
physical pin number, RasPi GPIO pins, 12
Picroft

available Mycroft Skills, 138–140
configuring, 134–136
installation, 133–135
Mycroft Enclosure for RasPi 3, 130
as Mycroft for RasPi 3, 133
Mycroft GPIO Skill, 136–138

pin descriptions and functions, Xbee, 194–195
pin ID, GPIO, 12–13
Pin No. designation, RasPi GPIO pins, 12
pins, RaspPi GPIO, 66–68
PIR (passive infrared sensor)

overview of, 182–181
security system. See security systems, HA
testing, 183–184

plant, simple HVAC FL system, 143–144
PocketSphinx, Mycroft wake-word detection, 131
port forwarding, HTTP requests to RasPi, 39–40
portable Z-Wave controllers, 119, 121–122
power consumption, Google Home device, 32
Power Switch Tail II. See PST2 (Power Switch Tail II)
Precise package development, Mycroft, 131
prediction, impact of AI on HA systems, 216
presence detection setup, HA operating systems, 

111–112
primary controllers, static Z-wave controllers, 119
privacy concerns, of HA devices

Mycroft personal voice assistant and. See Mycroft
overview of, 96

probability, of potential hazards, 190
Project Things by Mozilla.org, 125
proprietary HA hardware solutions, 100
PST2 (Power Switch Tail II)

extending control functions, 45–49
extending RasPi Google Home device, 65–69
RasPi GPIO pin control skill, 91–94
testing control of RasPI GPIO with Fauxmo, 79–80
wireless control, 49–53

pushbutton-LED combination, GPIO demonstration, 
21–22

12_Index.indd   223 2/1/19   2:03 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



224      Index

main controller Web software, 199–201
overview of, 191
Parts List, 189
remote hub hardware/software installation, 202–203
requirements, 191–192
RF communications link, 201
risk, 189–191
summary, 210
systems test, 206–207
voice assistant, 198–199
XBee and ZigBee technologies, 192–197

sensors
DHT11, 170–173
overview of, 169
Parts List, 169
passive infrared sensor (PIR), 182–184
sharing among HA subsystems, 213–214
summary, 188
TMP36, 173–181
ultrasonic sensor, 184–188

Serial API operating mode, RasPi to Z-Wave 
connection, 123

Serial Peripheral Interface. See SPI (Serial Peripheral 
Interface) protocol

services
automating Home Assistant, 108–109
configuring integrations for HA OS, 106–107
Home Assistant example automation, 109
Home Assistant presence detection, 111–112

servo
extending RasPi Google Home device, 69–74
voice HAT module, 18–19

sharing sensors and actuators, among HA subsystems, 
213–214

Sigma Designs UZB Stick, Things Gateway, 125
signal attenuation, Z-Wave, 115–116
signal extenders, Z-Wave, 115–116
single-ended mode, MCP3008 microchip, 176
Sipes, Ryan, 129–130
skfuzzy library, simple HVAC FL, 150–151
slaves (end point devices)

MCP3008 microchip, 177
Z-Wave, 118–119

slot component, Alexa skill, 77
smallest-of-maximum defuzzification method, simple 

HVAC FL, 148–149
Smarthomatic, open-source HA solution, 99
smartphone app, for Google Home device, 32
SoF (start-of-frame) byte, Z-Wave, 117
software

closed-source HA solutions, 100
downloading RasPi disk images, 4
Google Voice Assistant installation. See Google 

Voice Assistant, software installation
GPIO demonstration setup, 15–16
home automation (HA), 96–97
installing DHT11 sensor, 171–173
Project Things by Mozilla.org, 125–127
RasPi main controller Web, 197–198

Raspbian image
downloading for RasPi, 4
writing to micro SD card, 5–6

registration
ifttt.com, 34–35
Picroft installation, 133–134

REMOTE directory, Picroft configuration, 135–136
remote sensor hub, HA security system

assembly, 192–196
hardware/software installation, 202–203
overview of, 191–192
schematic, 206

removal operating mode, Z-Stick, 123
requirements

designing HA projects, 2
HA security system, 191–192

resistive DHT11 sensor, 170–173
resistive voltage divider, ultrasonic sensor, 186
review and finish screen, ifttt.com, 40
RF communications link

adapters for integrated HA systems and, 212
HA security system, 201

RF (radio-frequency) transmitter/receiver, PST2 power 
device wireless control, 49–53

RF transceiver, Z-Wave, 115–116
RH (relative humidity), vs. dew point, 161
risk, HA security systems, 189–191
Rogers, Christopher, 138, 141
roles, automating Home Assistant, 108
roomTemp input variable, simple HVAC FL, 146–148, 

150–151
Routing layer, Z-Wave, 117
RPi.GPIO (Python library)

installing before entering Python script, 62–64
Python control script and PWM, 70–73
RasPi Web server software, 42

S
safety, HA design for, 3
Samba, editing Home Assistant configuration, 104–105
SAR (successive approximation register), MCP3008 

microchip, 175–176
scikit-fuzzy subdirectory, simple HVAC FL, 150
scipy library, simple HVAC FL, 150
script automation

automating Home Assistant, 107–108
integrated HA systems, 214–215

SDK (Google Assistant Software Development Kit) for 
RasPi, Python 3, 58

Secure Shell login. See SSH (Secure Shell) login
security concerns, HA devices, 96
security systems, HA

additional main controller hardware/software 
installations, 203–206

extensions and modifications, 209
impact of AI on, 216
initial test, 201
integration of all software, 207–209
main controller assembly, 197–198

12_Index.indd   224 2/1/19   2:03 PM



Index      225

extended RasPi Google Home device, 65–66, 68–69, 
70, 73–74

gateway system for Z-Wave, 127
Google Home device connection to RasPi, 43–45
Google Voice Assistant audio setup, 56–57
Google Voice Assistant on RasPi, 64
HA security system, 201
Mycroft GPIO Skill, 136–138
passive infrared sensor (PIR), 183–184
PST2 power device wireless control, 53
simple HVAC FL, 155–156, 159–160
ultrasonic sensor, 187–188
voice kit, 27–28

text editor, entering Python script into RasPi, 42
text-to-speech synthesis (TTS) engine, Mycroft, 130
thermal conductivity DHT11 sensor, 170
Things Gateway, controlling/monitoring HA devices, 

125
third-party devices, Home Assistant presence detection, 

111–112
TMP36 temperature sensor

analog-to-digital conversion, 175–176
inner workings of MCP3008 ADC microchip, 176–182
overview of, 173–175

Transport layer, Z-Wave network model, 117
TRIAC (triode for alternating current) control

Z-Wave network devices, 118
ZW3102N Module, 121

trigger
automating Home Assistant, 107–108
HA security system, 201
Home Assistant example, 109
ifttt.com, 34, 36

TTS (text-to-speech synthesis) engine, Mycroft, 130

U
UART (universal asynchronous receiver/ transmitter), 

ZW0301 microchip for Z-Wave, 120–121
UI (user interface), Z-Wave network model, 118
ultrasonic sensor

overview of, 184–185
physical setup, 185–186
testing, 187–188

universal asynchronous receiver/ transmitter (UART), 
ZW0301 microchip for Z-Wave, 120–121

updating, Raspbian distribution, 10–11
upgrading, Raspbian distribution, 10–11
URL

authenticating RasPi to Google Cloud, 61
building/configuring Alexa skill, 89
implementing Alexa skill, 86
RasPi Web server availability on Internet., 38–39
testing Alexa skill, 89
turning off  LED using voice command, 43

USB microphone
Picroft configuration, 134
RasPi emulating Google Voice Assistant, 56–57

USER directory, Picroft configuration, 135
user interaction, HA design for, 3

Raspi Web server, 41–43
setup for TMP36 sensor, 178–181

software, HA security system
integrating all, 207–208
main controller installation, 204–207
main controller Web, 199–204

speakers
audio setup, RasPi emulating Google Voice  

Assistant, 56
Google Home device hardware, 32

speech synthesis (Mimic), Mycroft, 130
speech-to-text (STT) software, Mycroft, 131
speech_text variable, extending RasPi Google Home 

device, 66–68
SPI (Serial Peripheral Interface) protocol

MCP3008 chip, 175, 177–178
software setup for TMP36 sensor, 178–181
ZW0301 chip for Z-Wave microcontroller, 120–121

SSH (Secure Shell) login
installing Mycroft GPIO Skill, 136
login to RasPi with network connection, 123–124
Picroft installation, 134

start-of-frame (SoF) byte, Z-Wave, 117
Startengine, Mycroft shares through, 129–130
State Developer tool, Home Assistant automation, 

110–111
states, automating Home Assistant internal HA OS, 108
static IP addresses, configuring Wemo for Home 

Assistant, 107
static update controller (SUC), Z-Wave

ID server IS (IS), 119
overview of, 119

static Z-Wave network controllers, 119
STT (speech-to-text) software, Mycroft, 131
subsystems, integrated HA systems, 211–215
SUC ID server (IS), Z-Wave, 119
SUC (static update controller), Z-Wave, 119
successive approximation register (SAR), MCP3008 

microchip, 175–176
sudo apt-get update, updating Raspbian distribution, 

11
sudo apt-get upgrade, upgrading Raspbian 

distribution, 11
sudo raspi-config, RasPi emulating Google Voice 

Assistant, 56
swimming pool surveillance, with ultrasonic sensor, 188
SYSTEM directory, Picroft configuration, 135

T
targetTempinput variable, simple HVAC FL, 147–148, 

150, 151
TauTronics Bluetooth transceiver, HA security systems, 

189, 198, 207
templates.yaml file, Alexa skills, 86
testing

AC-powered lamp, 48–49
complex HVAC FL script, 167–168
control of RasPI GPIO with Fauxmo, 79–80
DHT11 sensor, 173

12_Index.indd   225 2/1/19   2:03 PM

w
w

w
.e

le
c
tr

o
n
ic

b
o
.c

o
m



226      Index

wiringPi installation. See GPIO demonstration
workstation approach

configuring NOOBS image for RasPi, 6–10
HA design for user interaction, 3

wpa_supplicant.conf, connecting RasPi to home  
WiFi, 9–10

X
XBee Shield (Module), HA security system

hardware, 193–195
main controller assembly, 197–198
main controller software installation, 204–205
overview of, 192
in plastic case and schematic, 196
red blinking indicator, 195

XBee technologies
adapters for integrated HA systems and, 212
hardware, 193–195
overview of, 192
pin descriptions and functions, 194–195
using Zigbee protocol, 195

XBee transceiver, HA security system
overview of, 192
as part, 189
systems test, 206–207

Z
Z-Stick, connecting RasPi to Z-Wave, 122–123
Z-Wave

demonstration, 121–122
fundamentals, 115–116
interface, and RasPi, 122–123
microcontroller, 120–121
network basics, 116–118
network devices, 118–119
Project Things by Mozilla.org, 125–127
SSH login, 123–125
summary, 128

Zensys module
connecting RasPi to Z-Wave network, 122–123
Z-Wave microcontroller, 120–121

Zigbee protocol
adapters for integrated HA systems and, 212
Xbee using, 195

Zigbee technologies, HA security system, 192–197
ZW0301 chip, Z-Wave microcontroller, 120–121
ZW3102N Model, Zensys chip design for Z-Wave, 

120–121

user interface (UI), Z-Wave network model, 118
utterance component, Alexa skill, 77, 89

V
video classification, impact of AI on HA systems, 216
virtual nodes, Z-Wave networks, 119
Vizeli, Pascal, 99
voice assistants

Google. See Google Voice Assistant, RasPi 
emulating; Google Voice Assistant, software 
installation

HA security systems, 197–199
one-stop control for integrated HA systems, 212–213

voice-recognition approach, HA design for user 
interaction, 3

voltage level
DHT11 sensor physical setup, 171
GPIO, 11–12
ultrasonic sensor, 185

W
wake-word detection/selection, Mycroft, 131
Web action, ifttt.com, 36–37
Web request configuration, ifttt.com, 36–38
Web service, connecting to RasPi, 34–35
weighted-average defuzzification method, 150
Wemo app screen, smartphone, 75–76
Wemo demonstration

Alexa skill, 76–78
connecting Amazon Echo to smart home device, 

75–76
Fauxmo, 78–80
Fauxmo server, 83–84
mini WiFi Smart miniplug, 75–76
Python control script, 81–83
testing Fauxmo, 79–80

Wemo devices, integrations for Home Assistant, 106–107
Wheeler, John, 85
WiFi network

adapters for integrated HA systems and, 212
connecting RasPi to home, 8–10
installing Home Assistant HA OS, 101
Picroft installation, 133–134
Project Things software installation, 125–127
Z-Wave network vs., 115

Win32DiskImager, writing Raspbian image, 5–6
wireless control, Power Switch Tail II power device, 

49–53

12_Index.indd   226 2/1/19   2:03 PM


	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	1 Designing and Building Home Automation Projects
	Generalized HA Design Approach
	Raspberry Pi Setup
	Writing the NOOBS Image to a Micro SD Card
	Writing the Raspbian Image to a Micro SD Card
	Configuring the NOOBS Image
	Updating and Upgrading the Raspbian Distribution

	General-Purpose Input/Output
	GPIO Demonstration
	Demonstration Hardware Setup
	Demonstration Software Setup
	The Make Utility
	Natural Human Interaction
	HAT Module
	Microphone Array Module
	Pushbutton-LED Combination

	Google Voice Assistant Software Installation
	Create a Google Account
	Log into the Google Cloud
	Create a Google Cloud Project
	Enable the Google Assistant API
	Obtain Credentials
	Download and Rename Credentials
	Activity Controls
	Testing the Voice Kit

	Extending the Voice Kit Functionality
	Summary

	2 Interfacing a Google Home Device with a Raspberry Pi
	Google Home Device
	Configuring the Google Home Device

	Connecting a RasPi to the Google Home Device
	ifttt.com
	RasPi Web Server Software
	Demonstration Circuit
	Test Run

	Extending Control Functions
	AC-Powered Lamp Demonstration
	AC Lamp Applets
	Python Web Server Modifications
	Test Run

	PST2 Wireless Control
	Wireless Communications Setup
	Test Run

	Summary

	3 Raspberry Pi Implements a Google Voice Assistant
	Audio Setup
	Installing and Configuring the Python 3 Environment
	Installing and Enabling the Google Cloud Project
	Authenticating the RasPi to the Google Cloud Platform
	LED Operations Indicator
	Python Script
	Test Run

	Extending the RasPi Google Home Device
	Test Setup
	Modified Python Control Script
	Test Run

	Still More Extending of the RasPi Google Home Device
	Basic Servo Facts
	Test Setup
	Python Control Script Incorporating the PWM Option
	Test Run

	Summary

	4 Raspberry Pi GPIO Control with an Amazon Echo
	Wemo Demonstration
	Alexa Skill
	Fauxmo
	Test Setup
	Test Run
	Python Control Script
	Fauxmo Server

	Creating an Alexa Skill from Scratch
	Memory Game Skill
	Test Run

	Building and Configuring the RasPi GPIO Pin Control Skill
	Python Control Script
	Building the Alexa Skill

	Summary

	5 Home Automation Operating Systems
	Computer Operating Systems
	Home Automation Operating Systems
	Open-Source HA OS Solutions
	Proprietary and Closed-Source Hardware/Software

	Installing the Home Assistant HA OS
	Modifying the Home Assistant Using the Configurator
	Configuring Integrations

	Automating the Home Assistant
	Internal HA OS States
	HA OS Services
	Automation Example
	Modifications to the Automation Example
	Setting Up Presence Detection

	Summary

	6 Z-Wave and Home Automation
	Z-Wave Fundamentals
	Z-Wave Network Basics
	Network Devices
	The Z-Wave Microcontroller
	Z-Wave Demonstration

	RasPi and the Z-Wave Interface
	SSH Login
	Project Things by Mozilla.org
	Software Installation
	Add Things
	Test Run

	Summary

	7 Mycroft and Picroft
	Mycroft Structure
	Mycroft Hardware
	Picroft
	Picroft Installation

	Configuring Mycroft
	Mycroft GPIO Skill
	GPIO Test Circuit
	Test Run

	Mycroft Skills
	Philips Hue Skill
	Summary

	8 Fuzzy Logic and Home Automation
	A Simple HVAC FL System
	Basic FL Concepts
	FL Implementation Procedure
	Python Script for a Simple HVAC System
	Generating the Expert System Rules
	Fuzzification
	Inference
	Aggregation
	Defuzzification
	Simple HVAC System Python Script
	Testing the Simple HVAC System Script
	LED Mode Indicators
	Test Run for the Mode Indicator LEDs

	Complex HVAC System Demonstration
	Humidity Control
	Augmented Simple HVAC System
	Complex HVAC System Python Script
	Test Run for the Complex HVAC System Script

	Summary

	9 Sensors
	Temperature and Humidity Sensors
	DHT11
	TMP36
	Passive Infrared Sensor
	Ultrasonic Sensor

	Summary

	10 HA Security Systems
	Risk
	PIR Security System
	Security System Requirements
	Software Generation and Installation
	Integrating All the Software
	Extensions and Modifications

	Summary

	11 Integrated Home Automation Systems
	Adapters
	One-Stop Control
	Shared Sensors and Actuators
	Script Automation
	Additional Subsystems That May Be Automated
	AI and HA

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z


