The Raspberrypi is a mini-computer board which is powerful enough to run large operating systems like Linux, Mac and Windows. The Raspberrypi is called a mini-computer because the SoC has the powerful ARM11 processor which runs on 700 MHz at its core and having the peripherals like timers, interrupt controller, GPIO, PCM / I2S, DMA controller, I2C, SPI slave, PWM, UART, USB, graphical processing unit (GPU) which includes VideoCore, MPEG-2 and MPEG-4 and a 512 MB SDRAM.
Linux operating systems especially Ubuntu is preferred for all kind of programming and development. The Raspberrypi is a board actually designed for helping computer education for remote schools but it is a nice platform for programmers especially beginners to explore various coding techniques. The immediate advantage of having an Operating System like Ubuntu running on an embedded system device is multitasking.
In this project the Raspberrypi board is loaded with Ubuntu and is remotely accessed using VNC. The Raspberrypi board is also connected to the internet. There are 26 connectors which can be taken out from the connector port of the Raspberrypi board. All the connector pins are taken out using 13*2 pin female connectors and at the other end of their wire 26 pin Burg stick male connectors are attached. The Burg stick male connectors allow each pin out from the Raspberrypi board to be plugged into the holes of a breadboard. To access the pins that coming out of the Broadcom controller of the Raspberrypi board using C language, a C library is available called “bcm2835” which has been downloaded and installed.
A signal is sent for the purpose of notifying the process about something that required immediate attention. Different signals are used to notify different events and the signals are differentiated by their signal numbers. The list of all the available signals in the OS and their signal numbers can be obtained using the following command:
kill -l
The following table gives a list of the most common signals that a process might encounter in an Operating System:
NAME | NUMBER | DESCRIPTION |
SIGHUP | 1 | Linux sends a process this signal when it becomes disconnected from a terminal. |
SIGINT | 2 | Linux sends a process this signal when the user tries to end it by
pressing CTRL+C. |
SIGILL | 4 | Linux sends a process this signal when it attempts to execute an illegal instruction. |
SIGABRT | 6 | Linux sends a process this signal to the process when the process calls the ‘abort ()’ function |
SIGFPE | 8 | Linux sends a process this signal when it has executed an invalid floating-point math instruction |
SIGKILL | 9 | Linux sends a process this signal to end it immediately |
SIGUSR1 | 10 | User programs can send this signal to other process |
SIGUSR2 | 12 | User programs can send this signal to other process |
SIGSEGV | 11 | Linux sends a process this signal when the program has attempted an invalid memory access |
SIGPIPE | 13 | Linux sends a process this signal when the program has attempted to access a broken data stream, such as a socket connection that has been already closed |
SIGALRM | 14 | A process can receive this signal from the Linux using the function alarm(), after a time period mentioned in its argument. |
SIGTERM | 15 | Linux sends a process this signal requesting it to terminate |
SIGCHLD | 17 | Linux sends a process this signal when a child process exits |
SIGXCPU | 24 | Linux sends a process this signal when it exceeds the limit of
CPU time that it can consume. |
SIGVTALRM | 26 | A process can receive this signal from the Linux using the function setitimer (), after a time period mentioned in its argument. |
In this project a Parent process creates so many Child process and controls them using the signal 12 which is the ‘SIGUSR2’. The two signals ‘SIGUSR1’ and the ‘SIGUSR2’ are reserved for the user applications and hence they can be used in this project also.
In this particular project a Parent creates 8 Childs process which are then used to control 8 LEDs connected to the IO pins of the Raspberrypi board. The Child processes are then made to change the glowing state of the LED by sending ‘SIGUSR2’ signal. This forms a Process System made up of several Child process and a Parent process and the entire system is controlled by the Parent process.
For more detail: Interprocess Signalling in Raspberry Pi