VXO β€” based PLL Frequency Synthesizer for 7 MHz

In EMRFD, 4.10, Wes provides the schema for a versatile VXO – extending frequency synthesizer. Although, I referred him to Wes for help, a reader asked me some questions and I ended up designing some pieces for him. In order to test some of my ideas, I made a VXO – based synthesizer that tuned from 6.99 to 7.103 MHz using only parts I had in stock.

VXO β€” based PLL Frequency Synthesizer for 7 MHz

For those interested, here's some project schematics, notes and images:


To make a VXO to mix with a ~7 MHz VCO, you'll need a crystal that is higher in frequency than the highest frequency you want to synthesize. Some rummaging revealed a bag of 21.4773 MHz crystals that I could divide by 3 to garner 7.159 MHz.

To afford a reasonable delta F, three were placed in the super VXO fashion and I applied the smallest amount of series inductance that would ensure a reasonable delta F with solid frequency stability.

Above β€” The schematic of my VXO. Through experiments I determined that 3 crystals and the inductance shown gave a stable ~30 KHz swing in frequency when divided by 3. A BD139 with low flicker noise gets buffered, digitized and then buffered again by a single inverter crafted by an AND gate.

The simple divide by 3 circuit lacks a 50% duty cycle, but worked OK. A low cutoff frequency low-pass filter serves to clean up the waveform, plus attenuate the output signal so that it is somewhere between 200 and 300 mV peak to peak to chop the NE612 mixer without excessive distortion in the mixer output.

For More Details: VXO β€” based PLL Frequency Synthesizer for 7 MHz

About The Author

Ibrar Ayyub

I am an experienced technical writer with a Master's degree in computer science from BZU Multan University. I have written for various industries, mainly home automation, and engineering. I have a clear and simple writing style and am skilled in using infographics and diagrams. I am a great researcher and is able to present information in a well-organized and logical manner.

Follow Us:
Scroll to Top